
Journal of Volcanology and Geothermal Research xxx (2012) xxx–xxx

VOLGEO-04892; No of Pages 18

Contents lists available at SciVerse ScienceDirect

Journal of Volcanology and Geothermal Research

j ourna l homepage: www.e lsev ie r .com/ locate / jvo lgeores
Geodetic observations during the 2009 eruption of Redoubt Volcano, Alaska

Ronni Grapenthin ⁎, Jeffrey T. Freymueller, Alexander Max Kaufman
Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Drive, P.O. Box 757320, Fairbanks, AK 99775-7320, USA
⁎ Corresponding author. Tel.: +1 9074747428.
E-mail addresses: ronni@gi.alaska.edu (R. Grapenthi

(J.T. Freymueller), amkaufman@alaska.edu (A.M. Kaufm

0377-0273/$ – see front matter © 2012 Elsevier B.V. All
doi:10.1016/j.jvolgeores.2012.04.021

Please cite this article as: Grapenthin, R., et
therm. Res. (2012), doi:10.1016/j.jvolgeore
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 8 October 2011
Accepted 12 April 2012
Available online xxxx

Keywords:
Redoubt
Volcano
Eruption
Geodesy
Plume detection
Source modeling
In March 2009 Redoubt Volcano, about 160 km to the SW of Anchorage, Alaska, began its most recent explosive
eruption. Deformation induced by this event was recorded by a GPS campaign network consisting of 14 bench-
marks, which had been established in 1991 after the previous eruption. The network was partially reoccupied in
2001 and 2008 and no volcanic deformation was detected during that period. In response to precursory unrest
starting in January 2009, the Alaska VolcanoObservatory temporarily deployed continuously recordingGPS instru-
ments at four of the campaign benchmarks only days before the onset of explosive activity in March 2009.
The only GPS instrument recording continuously during the months prior to the eruption was the Plate Boundary
Observatory (PBO) station AC17, about 28 km northeast of the volcano's summit. Data from this station reveals
subtle motion radially outward from the volcano beginning as early as May 2008, which reversed with the
onset of explosive activity.
Using simple analytical models we link the precursory activity to a point source intrusion of 0.0194 0.0340

0.0092 km3 in
volume at 13.50 17.33

10.17 km below sea level (bsl, superscripts and subscripts refer to upper and lower ends of confi-
dence intervals at the 95% level). During the explosive phase about 0.05 >0.1

0.028 km3 ofmagmawas evacuated from a
prolate spheroid with its centroid at 9.17 15.17

6.92 km bsl, a semimajor axis of 4.50 >10.00
1.25 km length and a semi-minor

axis of 0.475 >4.0
0.3 km. The effusive activity is inferred to come from the same source, decreasing in volume by

0.0167 0.0228
0.0106 km3.

Including observations from seismology and petrology, we hypothesize a mid-crustal two reservoir system with
material sourced from>20 km flowing in at about 13.5 km depth and reheating residual material in the proposed
spheroid. The mixture migrated to shallower depth (2–4.5 km bsl) and reheated material there. As this residual
magma erupted, it was replaced by the material from the spheroidal reservoir at 7–11.5 km depth, which renders
the shallow source undetectable for geodetic instruments.
In addition to long term displacements we investigate sub-daily kinematic positioning solutions and find that
large, short-term positioning offsets correlate with large explosive events. Spikes in phase residuals plotted
along the sky tracks of individual satellites can be related to individual plumes given favorable satellite–
station-geometry, which may be of use in volcano monitoring.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Redoubt Volcano lies in the Cook Inlet region on the northeastern
segment of the Aleutian arc. It is about 160 km southwest of Anchorage
inside the Lake Clark National Park and Preserve (Fig. 1, left) and about
400 km northwest of the Aleutian Megathrust (Fig. 1 inset), where the
Pacific Plate subducts beneath Alaska. The last eruption prior to the
2009 event occurred in 1989–1990 and is described in detail in Miller
and Chouet (1994). The region is volcanically active with historic erup-
tions at the neighboring volcanoes Augustine and Mt. Spurr.

Mt. Redoubt is a 3108 m high stratovolcano with a diameter of
10–12 km at its base at about 1200–1500 m above sea level. The ice
filled summit crater is about 1.5 km in diameter and is breached to
the north, which allows Drift Glacier to stretch up to 5 km down
n), jeff@gi.alaska.edu
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slope and into the Drift River Valley. Other smaller glaciers radiate
from the summit region and dissect the volcanic edifice (Fig. 1, left).
The overall largest mass of ice in the region is the Double Glacier ice
cap, which covers Double Glacier Volcano (Reed et al., 1992) on the
northern side of the Drift River Valley.

In the years since the 1989–90 eruption, surface deformation
studies of volcanoes have made significant contributions to the field
of volcanology. We can use simple models to link surface displace-
ments to subsurface motion of material and thus infer knowledge of
the plumbing system, displaced volumes and source depths as well
as the general state of the volcano. These techniques have been ap-
plied successfully to a wide range of volcanoes worldwide (Dzurisin,
2003, and references therein).

At Redoubt Volcano surface deformation is measured with high-
precision GPS in a network of 14 geodetic benchmarks. InSAR based
studies are generally difficult, because the glaciated, steep terrain af-
fects signal coherence and the strongest deformation signal related to
the 2009 eruption spreads over a wide region with an amplitude
ring the 2009 eruption of Redoubt Volcano, Alaska, J. Volcanol. Geo-
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Fig. 1. Regional setting and available GPS data. Left: Map of Redoubt area with GPS stations. The red triangle marks Mt. Redoubt. Red circles indicate temporary continuous GPS
stations, black circles mark campaign GPS stations, and the blue circle indicates the continuous PBO site AC17. White outlines mark glaciers in the region (Paul, 2010). The Double
Glacier ice cap to the north of Redoubt is outlined in gray and labeled; it seems to influence the time series at RGBY located on a cliff above one of its southern outlet glaciers. NUNA
is located on a large nunatak that sticks out of the ice. The black lines from SW to NE indicate major faults in the region: Bruin Bay Fault to the south, and Lake Clark Fault north of
Redoubt Volcano. DRV labels the mouth of the Drift River Valley. The black square in the inset indicates the location of this detail map. It also shows the location of the PBO site AC59
and the Aleutian Megathrust (AMT). Right: Overview of site occupations. Asterisks mark sites with composites of two tied markers. Each dot marks an existing daily positioning
solution. Triangles mark occupations of DUMB, RGRB, and RVBR which are tied to DUMM, RGBY and RVBM, respectively. Times of individual campaigns are given on the top
and are marked by gray lines. Red lines mark the 1989–1990 eruption and the recent event of 2009. The timescale is linear. The lower right figure is a blow up of the (temporary)
continuous stations from the decimal year 2008.75 to 2009.75 and shows vertical displacements for this time period. Vertical red lines indicate individual explosions (Table 1 in Bull
and Buurman, this volume). Times are given for the first deformation inducing eruption on March 23, 2009, and the largest and last explosion on April 4th, 2009. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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much smaller than the SAR wavelength. From 1991 to 2008, 4 GPS
campaigns were carried out, each occupying a set of benchmarks for
a few days (Fig. 1). In response to observed changes in activity of
the volcano (e.g., Bull and Buurman, this volume) 4 temporary con-
tinuous GPS stations (DUMM, RBED, RGBY, RVBM; Fig. 1) were
installed several weeks prior to the 2009 eruption.

An overview of the event, summarizing key observations from
various disciplines, is given by Bull and Buurman (this volume).
They separate the eruption into three distinct phases: precursory
(July 2008–15 March 2009), explosive (15 March–04 April 2009),
and effusive phase (April 4–July 2009). The precursory phase is char-
acterized by sulfur odors Bull et al., 2012, increased melting of Drift
River glacier showing collapse pits (Bleick et al., this volume) and
deep seismicity beginning in December 2008 (Power et al., this
volume). For the explosive phase, Bull and Buurman (this volume,
Fig. 2) describe a complex interplay of dome growth, collapse and ex-
plosive activity, and count 28 explosions with plumes reaching up to
>18 km above sea level (asl) (Table 1 in Bull and Buurman, this
volume). The final, persisting lava dome was extruded during the ef-
fusive phase. Its initial rapid growth slowed during the final stage of
dome building through lava intrusions into the dome (Bull and
Buurman, this volume; Diefenbach et al., this volume).
Please cite this article as: Grapenthin, R., et al., Geodetic observations du
therm. Res. (2012), doi:10.1016/j.jvolgeores.2012.04.021
Here, we present the first geodetic study of Redoubt Volcano and
focus on observations during the 2009 eruption. We start with an
overview of the geodetic network and data recorded at Redoubt
since 1991. We investigate GPS time series for the different phases
of the eruption, from which we infer source geometry, location and
volume change for each phase of the eruption. Since deep pre-
eruptive long period earthquakes indicate migration of material
below 20 km depth (Power et al., this volume) and petrologists sug-
gest that the magma of this event was sourced relatively shallow at
2–4.5 km bsl (Coombs et al., this volume), we are particularly inter-
ested in the question whether Redoubt presents us with a multi‐
source system. Furthermore, we investigate whether subdaily, kine-
matic positioning solutions can resolve any deformation that corre-
lates with explosive activity.

2. GPS data

2.1. GPS network history and site description

The geodetic network at Redoubt Volcano consists of 14 markers
(Fig. 1, Table 1); most of these were installed in response to the
1989 eruption and were first occupied during a campaign in 1991.
ring the 2009 eruption of Redoubt Volcano, Alaska, J. Volcanol. Geo-
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Table 1
GPS benchmark coordinates. Installation dates (YYYY-MM-DD) represent the earliest
available data.

4 Char
ID

Lat
(deg)

Lon
(deg)

Height
(m)

Installation
date

Dist to Redoubt
(km)

RSUM 60.800404 −152.843023 908.4798 1991-06-20 35
NUNA 60.688944 −152.583804 954.2120 1991-06-20 24
QRRY 60.629873 −152.303741 56.1551 1991-06-20 30
RGBY 60.590781 −152.805216 1421.4969 2001-06-25 12
RDJH 60.590764 −152.805241 1422.4000 2010-08-20 12
DUMB 60.579978 −152.664516 230.6017 1991-06-20 11.5
DUMM 60.579923 −152.664469 231.1957 2009-02-27 11.5
RNE_ 60.577380 −152.741092 994.2093 1991-06-25 10
RVID 60.508641 −152.781835 1886.6534 1991-01-25 2.4
RTON 60.507123 −152.630164 1358.8424 1991-06-23 7.5
RVBM 60.486809 −152.843623 1646.2630 2009-02-28 4.5
RVBR 60.486866 −152.843663 1646.2310 1991-06-23 4.5
RBED 60.453568 −152.744912 1557.8103 1991-01-25 4.0
RFFL 60.444978 −152.745881 1445.8446 1991-06-23 5.0
CRSC 60.434693 −153.087553 1073.3678 1991-06-22 19
POLL 60.333857 −152.523572 849.9948 1991-06-21 22

West of Cook Inlet
AC17 60.663902 −152.403846 882.6025 2006-08-31 28
AC59 59.567197 −153.585201 308.5802 2004-09-01 112

A) original data in ITRF 2008
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Fig. 2. Original time series of positions in ITRF 2008 (A) and detrended data (B) from 2006 to
(A) Original GPS data for continuous GPS stations RGBY, DUMM, RVBM, RBED, and AC17 wi
dots) was used to estimate background linear trend and seasonal variations (shown in blac
move linear and seasonal trends while preserving the volcanic signal. DUMM has no season
estimated onset of precursory deformation at AC17. (B) Detrended data, stations are ordere
using a moving average with window size of 20 data points. Smoothing starts when stations
March 22 to April 05, 2009. The lighter gray box marks the effusive period from April 05 to
eruption average and illuminates pre-eruptive inflation and that the co-eruptive offset is o
north panel indicate estimated onset of precursory deformation at AC17.
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The network was reoccupied in 2001, 2008, 2009, and 2010 (Fig. 1,
right). No continuous sites were present in the region until 2006,
when the Plate Boundary Observatory (PBO) site AC17 was installed
about 28 km to the NE of the volcano near the Drift River Oil Terminal.
In response to the elevated levels of seismicity at Redoubt Volcano
beginning January 2009 (Buurman et al., this volume), the Alaska Vol-
cano Observatory (AVO) converted the campaign sites DUMB, RBED,
RVBR, and RGBY to temporary continuous deployments using fixed
height mast installations. During this effort RVBM and DUMM were
installed as secondary survey marks suitable for deployment with a
mast. The original DUMB benchmark could not be found under the
late February snow cover and RVBR is a benchmark on a pole, only
suitable for use with a tripod. DUMM and RVBM were installed on
February 27 and 28, 2009, respectively. The RBED installation did
not occur until March 18, 2009; 5 days before the onset of explosive
magmatic activity (Fig. 1, right). These sites were equipped with
Trimble 5700 receivers and Zephyr Geodetic antennas. The station
on Gorby's Summit, RGBY, was installed on February 10, 2009 and
equipped with a Trimble NetRS receiver and a Zephyr Geodetic anten-
na. This was the only digitally telemetered station during the 2009
eruption as it is co-located with the telemetered seismic station
RDJH (Buurman et al., this volume). Data from the other temporary
B) models removed

2007 2008 2009 2010 2011 2012. year

AC17

BED

UMM

AC17

BED

UMM

AC17

BED

UMM

2012. The rows show north, east and vertical displacements in meters (top to bottom).
th outliers >3σ removed. Data from 2009.4 (May 26th, 2009) onwards (shown as gray
k for this period). These models were extrapolated into the past (shown in gray) to re-
al model removed due to its short time series. Arrows in east and north panel indicate
d in the same way as in the left panel. Black line shows smoothed time series created
are continuous. The dark gray box in the background marks the explosive period from
July 01, 2009 (Bull and Buurman, this volume). Dashed line for AC17 shows the post
verall larger than the pre-eruptive average in the horizontal field. Arrows in east and

ring the 2009 eruption of Redoubt Volcano, Alaska, J. Volcanol. Geo-

http://dx.doi.org/10.1016/j.jvolgeores.2012.04.021


4 R. Grapenthin et al. / Journal of Volcanology and Geothermal Research xxx (2012) xxx–xxx
continuous deployments were recovered by AVO during times of rel-
ative quiescence of the volcano. The limited GPS real-time monitoring
capability was completely eliminated when the RGBY antenna was hit
by volcanic lightning. The lighting strike occurred within an hour of
the last data download at about 10:00:00 UTC on March 23, 2009.
Hence, it likely originated from the plume of event 04 (9:39 UTC)
(Table 1 in Bull and Buurman, this volume).

RGBY shows inexplicable seasonal behavior similar to a sawtooth
function (Fig. 2), which may result either from site specific freezing
extension of water in cracks of the bedrock, or loading deformation
due to its location close to a cliff near a Double Glacier outlet glacier
(Fig. 1, left). The setting close to a cliff could lead to amplification of
horizontal motion induced by seasonal loading of the glacier. Howev-
er, first order attempts to remove such a contribution by modeling
snow load effects on the position of the tip of a very long antenna
pole (an approximation for the cliff) failed. To mitigate any site spe-
cific effects, the new GPS site RDJH was installed on August 20,
2010; the new monument, however, shows similar seasonal motion.
We therefore report displacements at RGBY in figures and tables for
completeness, but we ignore these values in analyses.

2.2. Static GPS data processing

We use the GIPSY-OASIS II software (Gregorius, 1996) developed
at NASA's Jet Propulsion Laboratory (JPL) to compute Precise Point
Positioning solutions (Zumberge et al., 1997) for the GPS data and
then generate a time series of daily positions (Fig. 2A). We use the
JPL reprocessed satellite orbit and clock products. Details on
Table 2
Displacement table: Shows displacement values and uncertainties for each station in ENU d

Phase Inter-eruptive Pre-eruptive

Time 06/2001–08/2008 (wrt POLL) 08/2008–03/2009

# solutions 17 46

Site E N U
(cm)

E

AC17 – – – 0.00±0.0
CRSC 0.19±0.6 0.65±0.4 −0.84±1.3 –

DUMM – – – 0.32±0.3
NUNA 0.50±0.6 1.05±0.4 1.09±1.2 –

POLL 0.00±0.0 0.00±0.0 0.00±0.0 –

QRRY 0.19±0.6 1.37±0.4 −0.63±1.4 –

RBED 0.41±0.6 0.46±0.4 −0.61±1.2 0.02±0.3
RFFL 0.04±0.5 0.06±0.4 −0.58±1.2 –

RGBY −0.66±0.6 0.11±0.4 −1.41±1.3 1.57±0.2
RNE 0.14±0.6 0.67±0.4 −1.20±1.2 –

RTON 1.16±0.5 0.71±0.4 0.31±1.2 –

RSUM −0.04±0.6 0.36±0.4 −2.22±1.2 –

RVBM – – – −1.25±0.2
RVID 0.61±0.6 0.49±0.5 0.05±1.4 –

Phase Effusive Full eruption

Time 04/2009–06/2009 (wrt AC59) 08/2008–06/2009

# solutions 56 10

AC17 −0.30±0.1 −0.04±0.1 −0.04±0.3 −0.43±0.2
CRSC – – – 1.70±0.3
DUMM −0.66±0.2 −0.30±0.1 −1.31±0.3 −0.43±0.3
NUNA – – – −0.46±0.3
POLL – – – 0.06±0.3
QRRY – – – 0.15±0.3
RBED −0.18±0.2 0.65±0.1 −0.80±0.3 0.09±0.3
RFFL – – – −0.14±0.3
RGBY −0.26±0.2 −0.82±0.1 1.14±0.4 2.14±0.2
RNE – – – 0.07±0.3
RTON – – – −2.07±0.2
RSUM – – – 0.24±0.3
RVBM 0.38±0.1 0.25±0.1 −0.46±0.3 0.83±0.2
RVID – – – –

Please cite this article as: Grapenthin, R., et al., Geodetic observations du
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parameter estimation are given in Freymueller et al. (2008) and
Freymueller and Kaufman (2010). Our processing strategy follows
the general outline in Freymueller et al. (2008). Differences are that
we use the IGS05 absolute antenna phase center models, GMF tropo-
sphere mapping function, and we apply ocean tidal loading based on
the ocean tide model TPXO.7 computed with respect to the center of
mass of the Earth system (Fu et al., 2012). We also transform site po-
sitions into the International Terrestrial Reference Frame (ITRF) 2008.

To eliminate effects of non-volcanic deformation we subtract the so-
lutions of local reference stations from our network. We use this ap-
proach rather than a regional tectonic model because the tectonic
motion in this region is complex and time-dependent, and published
models leave unacceptable residual errors (Suito and Freymueller,
2009). The specific reference site varies depending on data availability
during the investigated time span, but we use one of the continuous
PBO stations whenever possible. We attempted using the PBO station
AC59, about 100 km to the SW of Redoubt, as a reference station, be-
cause the closest continuous GPS station on the western side of Cook
Inlet, AC17, shows deformation of volcanic origin during the studied pe-
riod (Fig. 2).However, seasonal signals due to snow loading are different
at AC59 compared to the Redoubt network, sowe can use AC59 as refer-
ence station only over short time intervals such as the explosive phase
(see Section 3), or over yearly intervals when surface loads are compa-
rable. All models are computed relative to the appropriate reference
site, so the choice of reference site mainly affects display of the data.

Displacements at the stations are estimated for time intervals by
first calculating velocities from daily solutions, and using these to
compute displacements over the investigated time periods (Table 2,
irection for each of the periods described in the text.

Explosive

(wrt AC17) 03/2009–04/2009 (wrt AC59)

14

N U E N U

0.00±0.0 0.00±0.0 −0.64±0.3 −0.85±0.2 −0.23±0.5
– – – – –

0.94±0.2 0.18±0.6 −1.12±0.3 −2.12±0.2 −1.83±0.6
– – – – –

– – – – –

– – – – –

−0.97±0.2 −0.46±0.6 −0.18±0.3 1.05±0.2 −2.51±0.5
– – – – –

1.91±0.2 −1.14±0.5 – – –

– – – – –

– – – – –

– – – – –

0.06±0.2 0.81±0.5 1.43±0.3 0.07±0.2 −2.43±0.5
– – – – –

Post eruptive

(wrt AC59) 06/2009–09/2011 (wrt AC17)

851

−0.75±0.1 −0.24±0.4 0.00±0.0 0.00±0.0 0.00±0.0
0.64±0.2 −2.60±0.6 – – –

−1.44±0.2 −3.04±0.5 −0.16±0.2 0.64±0.1 −0.49±0.4
−1.03±0.2 −2.23±0.6 – – –

0.87±0.2 −1.64±0.6 – – –

0.07±0.2 0.46±0.7 0.27±0.4 −0.26±0.3 −2.10±0.9
0.47±0.2 −3.35±0.5 0.05±0.1 −0.28±0.1 1.08±0.2
0.97±0.2 −2.35±0.6 – – –

−1.08±0.2 −2.78±0.5 0.24±0.1 0.91±0.1 0.10±0.2
−1.60±0.2 −2.16±0.5 – – –

−0.67±0.2 −2.74±0.5 – – –

−0.56±0.2 1.26±0.5 – – –

0.62±0.2 −2.24±0.5 0.11±0.1 −0.07±0.1 0.49±0.3
– – – – –
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exact date ranges given in Section 4). The uncertainties of the dis-
placements are the scaled uncertainties of the velocities, which are
based on a white noise model only. This could be too optimistic for
longer time series of continuous stations as these also include colored
noise. However, except for the interval from August 2008 to June
2009, the other periods are at most 56 days long and rescaling the un-
certainties is not a problem. For the 9 month long period, we used
only the days of the GPS campaigns at either end of the observation
period for both campaign and continuous stations, which avoids this
problem and also avoids the need to model the full time dependence
of the continuous time series. Because of this approach, the uncer-
tainties for the continuous GPS sites in Table 2 (column “Full Erup-
tion”) are roughly the same as for campaign sites.

To highlight the volcanic signals in the time series, we estimated
and removed long term linear and seasonal models for the PBO and
temporary continuous GPS stations. We first eliminated outliers
using a 3σ test and then estimated trends based on post-eruption
data from decimal year 2009.4 (May 26, 2009) to the present,
shown as gray dots in Fig. 2A. The estimated trends were extrapolated
into the past and removed from the time series, which should pre-
serve volcanic signals. For the seasonal signal we estimated annual
and semi-annual cosine and sine functions; only at RGBY we allowed
an additional saw-tooth function to be estimated (Fig. 2). This high-
lights the different phases of deformation in relation to the eruptive
phases.
2.3. Kinematic GPS data processing and phase residuals

We estimate kinematic solutions for the time period of the explo-
sive phase to determine subdaily position estimates. In the kinematic
solutions, we have to assume that all stations are in motion with re-
spect to a fixed base station. To estimate kinematic station trajectories
we use the software track, which is part of the GAMIT-GLOBK GPS
Please cite this article as: Grapenthin, R., et al., Geodetic observations du
therm. Res. (2012), doi:10.1016/j.jvolgeores.2012.04.021
processing package (Herring et al., 2010). Here, we use IGS satellite
orbits (Dow et al., 2009) and estimate tropospheric delay based on
the global pressure/temperature and global mapping functions
(Boehm et al., 2006, 2007; Kouba, 2009) implemented in track. As
our focus for the kinematic solutions is on short term displacements
in relation to individual events during the explosive period, we as-
sume that AC17 remains stable during these events and use it as
base station. This gives baselines of generally less than 40 km be-
tween rover and base station, and allows us to assume similar travel
paths for the satellite signals arriving at the stations.

During kinematic processing we found systematic positioning
outliers/spikes (described in Section 5) which we try to explain
using satellite phase residual values (RMS) as reported by the GIPSY
software using a kinematic network processing mode. To plot the
phase residuals, we use the cf2sky code by Hilla (2004); cf2sky vi-
sualizes teqc (Estey and Meertens, 1999) plot files along a satellite's
trajectory in a skyplot. We modified cf2sky to run on a Linux plat-
form and translated GIPSY postfit data into UNAVCO COMPACT for-
mat readable by cf2sky.
3. Modeling

3.1. Volcanic source models

Because of the limited data available and the lack of previous geo-
detic studies for Redoubt, we have to make several assumptions to
simplify the system. Assuming the magma source is embedded in an
elastic, isotropic and homogeneous half space is without doubt the
most drastic simplification (Masterlark, 2007). Elasticity is justified
by the short timescale of our investigation. Isotropy is justified by
the symmetry seen in the data (see Section 4). Homogeneity is the
least likely assumption, but no adequate 3D model of elastic moduli
exists. Consequently, these assumptions allow us to use simple
ring the 2009 eruption of Redoubt Volcano, Alaska, J. Volcanol. Geo-
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analytical models instead of heavily underdetermined systems of
equations or poorly constrained finite element models.

As the data shows a radially symmetric deformation pattern (see
Section 4), we limit our modeling efforts to radially symmetric pres-
sure sources: a pressure point source considering topography (Mogi
model) (Anderson, 1936; Yamakawa, 1955; Mogi, 1958), and prolate
spheroids in a flat half-space (reference surface is shifted to sea level).
Of the prolate spheroids, we test two types: a degenerate version
with a semimajor axis much larger than the semiminor axes (from
here on referred to as open/closed conduit) (Bonaccorso and Davis,
1999; Segall, 2010), and a general formulation that does not assume
a certain axes aspect ratio (Yang et al., 1988; Newman et al., 2006;
Battaglia et al., 2012), which we keep vertical and radially symmetric,
though.

The Mogi model has 4 parameters: horizontal location, depth and
source strength of the pressure point source. A conversion from
source strength to volume change is given, for example, by
Sigmundsson (2006, Equation 5.11) assuming incompressible
magma. The conduit and spheroid models share these parameters,
but replace the single depth with the upper and lower ends of the
vertically elongated source. The general formulation of the prolate
spheroid requires solving for the length of the semiminor axis,
which results in 6 free parameters for this model.

The source strength, C, of a conduit is given in terms of pressure
change, ΔP, conduit radius, a, and shear modulus, G (e.g., Segall,
2010).

C ¼ a2ΔP
4G

ð1Þ

To express the source strength in terms of volume change, which
is what we are ultimately interested in, we first solve the fluid pres-
sure formula in terms of ΔP:

ΔP ¼ K
ΔV
V

ð2Þ

where K is the bulk modulus, and V is volume.
The volume of a spheroid is V=4/3πa2(c2−c1) where c1 and c2

are upper and lower ends, respectively. If we express the bulk modu-
lus in terms of Poisson ratio ν and shear modulus G, we get the source
strength in Eq. (1) in terms of volume change as:

C ¼ 1þ ν
2 1−2νð Þ

ΔV
4π c2−c1ð Þ : ð3Þ

In addition to the single source cases, we also tested cases with 2
sources using combinations of two Mogi sources as well as a shallow
conduit and a deep Mogi source. However, the improvement in fit to
the data for these models was never significant based on an F-Test, so
we do not report results of these tests.

To find a source that fits the data, we implement a two-stage grid
search over the spatial domain; although computationally more cost-
ly than other non-linear inversion methods, this is straightforward to
implement and practical considering the sparse data.

We start on a coarse grid with an area of 10 km×10 km centered
on the location of the final dome of the 2009 eruption (Diefenbach et
al., this volume). On this grid we search for sources between 1 and
40 km depth. The grid node spacing for both, horizontal and depth
search is 1 km. All best fitting source models were located within a
5 km radius from the last dome, so we densified the search grid
over the center area of 5 km×5 km. We search again for sources be-
tween 1 and 40 km depth with a grid node spacing of 250 m in
every direction. We estimate the volume change, ΔV, over the respec-
tive time period using least squares inversions for each set of
Please cite this article as: Grapenthin, R., et al., Geodetic observations du
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geometric parameters. For conduits and spheroids we also assume
that the lower end is at least one grid cell below the upper end.

The best source parameter combinations are found by minimizing
χ2 (Press et al., 2007), which compares measured and modeled dis-
placements and provides a quantitative measure of misfit for each
set of parameters. We select the best fitting source within the search
space corresponding to a physically reasonable local minimum of χ2.
Confidence intervals for each parameter are picked based on Δχ2

values assuming one degree of freedom projected on the axis of the
respective free parameter (Press et al., 2007). We give confidence in-
tervals at the 95% level.

To reduce computational cost, we only search for a general prolate
spheroid when a conduit model provides a better fit than the Mogi
source and the pressure change in the conduit would be greater
than lithostatic stress, as conduit models in that case would be
unphysical. We search over semimajor axis lengths from 1 km to
7 km in 250 m increments and over semiminor axis lengths from
0.1 km to 1 km in 25 m increments assuming a crustal shear modulus
of 26.6 GPa (Turcotte and Schubert, 2002).

3.2. Network sensitivity analysis

A question seldomly addressed when interpreting geodetic signals
at active volcanoes is which signals a network cannot resolve, i.e.,
what is the smallest source at a given depth we can possibly infer
from the data? This has important implications on the interpretations
of the signals actually resolved in the data, the plumbing system of a
volcano we infer from these data, and how geodetic observations can
be incorporated into observations of other disciplines.

Let us assume we can detect position changes greater than 5 mm
in the data, which is just above GPS noise. We apply the Mogi
model (topography corrected, see Yamakawa (1955)), the closed
and open conduit model and try to find the smallest, shallowest
source between 0 and 30 km depths (100 m steps) that induces de-
tectable displacements (>5 mm). For the purpose of this analysis
the source is assumed to be centered under the location of the final
dome of Redoubt's 2009 eruption (Diefenbach et al., this volume).
The pipes are defined as 15 km long since the lower end has only
small effects on the deformation field. Fig. 3 shows the results: each
line indicates the depth–volume change dependence for each station
that would produce significant displacements. Solid and dotted lines
represent horizontal and vertical 5 mm iso-displacement lines, re-
spectively. The colors are the same for each station in all three panels
as indicated in the legend. The gray lines in the panels for the Mogi
source and the closed conduit assist in interpreting this plot. For the
Mogi source we see that a volume change of 0.01 km3 at 21.6 km
will induce 5 mm of vertical displacement at RBED and RVBM. No dis-
placements above the 5 mm threshold will be recorded at any of the
other stations for this source. Similarly, we can see that a volume
change of 0.04 km3 in a Mogi source at 15 km will induce displace-
ments above the threshold in both components at all sites except
AC17 where it only affects the horizontal component. For a closed
conduit we can see that the network will not show displacements in-
duced by volume changes smaller than 0.01 km3 at depths greater
than 7.5 km. An open conduit will be detected only if it is shallower
than 10 km with volume changes greater than 0.02 km3.

4. Long term displacements: estimating volcanic source parameters

The first GPS campaign measurements at Redoubt were done in
January and June of 1991; the latter producing most of the data
(Fig. 1). Half of the receivers used in June 1991 produced questionable
L2 phase data, so several sites had to be excluded. The uncertainties
associated with such early GPS data are much larger than for current
measurements. This complicates precise estimation of displacements
to infer volcanic deformation. However, the bigger issue with these
ring the 2009 eruption of Redoubt Volcano, Alaska, J. Volcanol. Geo-
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Fig. 4. Displacements from 2001 to 2008 (inter-eruptive period) with respect to CRSC (left) and POLL (right). Blue vectors are horizontal displacements, red vectors are vertical
displacements. Arrows are tipped with 95% confidence ellipses/lines. Numerical values for displacements (wrt POLL) are given in Table 2. Neither referencing the displacements
to CRSC (left) nor to POLL (right) reveals a pattern consistent with deformation at Redoubt. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 5. Displacements during pre-eruptive period from August 2008 to March 2009
with respect to AC17 (blue: horizontal, red: vertical) and displacements induced by a
preliminary model (white: horizontal, black: vertical) inferred from horizontal dis-
placements only. Data arrows are tipped with 95% confidence ellipses/lines. Prelimi-
nary model predictions assume a Mogi source at depth d=21.75 km with volume
change dV=0.1018 km3 (see column “preliminary precursory” in Table 3). The red tri-
angle marks Mt. Redoubt. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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data is that only very few stations defined the global reference frame
at that time. These stations also differ from those defining the current
ITRF. It is possible to align the earlier measurements to the current
reference frame by applying station ties between old and current sta-
tions realizing the reference frame. However, at the time of this writ-
ing, this process could not be completed to sufficient precision.
Analysis of baselines between stations shows no evidence for volcanic
deformation larger than the noise level, so these data are not dis-
cussed further.

Based on the intervals of GPS data collection as well as activity of
the volcano, we look at displacements over various periods of time.
Bull and Buurman (this volume) separated the eruption into distinct
phases based on changes in activity. However, we cannot follow
their dates exactly due to the times at which the GPS sites were
reoccupied (Fig. 1). For example, we define the end of the effusive
phase as the time of a survey in June 2009 while Bull and Buurman
(this volume) define July 2009 as the end.We also see no deformation
associated with the explosive event on March 15, which is why our
precursory phase extends to March 22, 2009, after which juvenile
material was extruded. The displacement values for the individual
phases of the eruption as displayed in Figs. 5–8 are compiled in
Table 2.

4.1. Inter-eruptive period (06/2001–08/2008)

We use 17 daily positioning solutions to constrain displacements
with respect to CRSC and POLL (Fig. 4) from June 19, 2001 to August
09, 2008. Neither AC59 nor AC17 was operational in 2001 and they
could therefore not be used as reference stations. The maximum dis-
placements over a period of 7 years remain below 15 mm in the hor-
izontal and vertical with uncertainties of 4–6 mm and 12–14 mm,
respectively. The spatial signature of the signal seems largely non-
volcanic with local effects at POLL likely due to tectonic deformation.
NUNA shows uplift, likely due to melting of the Double Glacier ice
cap.

4.2. Precursory phase (08/2008–03/2009)

As the first explosion containing juvenile material was reported on
March 23, 2009 (Bull et al., 2012; Bull and Buurman, this volume), we
Please cite this article as: Grapenthin, R., et al., Geodetic observations du
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consider the time between the campaign in 2008 and this event the
precursory phase. At this time, only 4 stations of the Redoubt network
were operating due to their conversion to temporary continuous
sites. However, in addition to this, the continuously recording station
AC17 gives a good record of far field deformation indicating the
ring the 2009 eruption of Redoubt Volcano, Alaska, J. Volcanol. Geo-
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Fig. 6. Displacements and model fit during explosive period from 22 March to 04 April
with respect to AC59. Same symbols as in Fig. 5. Both, vertical and horizontal data are
fit well by the model. Vectors from all stations point straight at position of last dome
(red triangle). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 7. Displacements (blue: horizontal, red: vertical) and model fit (white: horizontal,
black: vertical) for effusive period from 05 April to 30 May with respect to AC17. The
model fit assumes the same prolate spheroid geometry as the explosive phase with
volume change dV=−0.0167 km3 (see column “effusive” in Table 3) and is based
on the fit to displacements at RBED and RVBM only. Data arrows are tipped with 95%
confidence ellipses/lines. The red triangle marks Mt. Redoubt. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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reversal of the subtle pre-eruptive deformation trend with the onset
of explosive activity (see Fig. 2).

The time series of AC17 (Fig. 2) gives the most insight into the
timing of deformation during the precursory phase. The horizontal
time series shows a clear deviation from the long term trend during
this phase when compared to the trend of the post-eruption data.
The onset of this change in motion is hard to pin-point to a specific
date, but with some confidence we estimate it to be approximately
May 2008. The north component shows this change in trend more
clearly than the east component; the combined horizontal motion is
toward the NE. Generally speaking, this motion is consistent with a
deep intrusion under Redoubt.

The vertical component at AC17 contains interesting, but mostly
non-volcanic motion. Given the large distance of about 28 km from
the volcano most analytical source models suggest no or very little
vertical deformation at the station. Fig. 2, however, shows small rela-
tive subsidence from the beginning of 2008 through the end of the ef-
fusive period in 2009. The mean of the detrended vertical data for
Table 3
Best fitting models. Depth values in parenthesis are actual model results not topography co
erence surface to sea level and give depths below sea level. Confidence intervals (superscri

Preliminary precursory Final precursory

Stations DUMM, RBED, RVBM AC17, CRSC, NUNA, RBED, R
RNE, RSUM, RTON, RVBM

# observables 6 (horizontal only) 18 (horizontal only)
Average elevation (m) 1145.01 1202.67
Source geometry Closed conduit Mogi Mogi Prolate s
Centroid depth (km) 10.61 (11.75) 21.75 13.50 17.33

10.17 See explo
Semimajor (km) 12.00 – – See explo
Semiminor (km) 0.025 – – See explo
ΔV (km3) 0.0309 0.1018 0.0194 0.0340

0.0092 0.0278 0.0
0.0

dx (km) −1.75 −3.25 0.00 See explo
dy (km) −2.75 −4.00 −1.25 See explo
χ2 0.1005 1.1426 14.2667 18.54055
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AC17 (dashed line in Fig. 2) highlights this observation. Rather than
a volcanic signal, it is likely loading due to residual snow from an un-
usually cold summer in 2008 (Anthony Arendt, pers. comm.,
unpublished GRACE data). Grapenthin et al. (2006, 2010) and Pinel
et al. (2007) show that surface loading hardly affects the horizontal
signal when the vertical signal is this small, which assures us that
the horizontal signal is volcanic. We do not have enough data to
model and remove the snow effect and hence do not use vertical mo-
tion at AC17 to model volcanic effects.

We attempted to evaluate the displacements at AC17, DUMM,
RBED, and RVBM during the precursory phase with respect to AC59.
However, a difference in snow loading obscures the small volcanic
signal in horizontal displacements at DUMM, RBED, and RVBM. We
remove this by displaying these data with respect to AC17 (Fig. 5),
which results in vectors pointing radially away from the volcano
rrected as for the spheroids the average elevation had to be removed to move the ref-
pts and subscripts) are given at the 95% level. Bold font highlights final models.

Explosive Effusive

FFL AC17, DUMM, RBED, RVBM RBED, RVBM

12 (horizontal+vertical) 6 (horizontal+vertical)
1079.40 1601.70

pheroid Prolate spheroid Mogi Prolate spheroid Mogi
sive 9.17 15.17

6.92 (10.25) 15.25 See explosive 8.75
sive 4.50 >10.00

1.25 – See explosive –

sive 0.475 >4.00
0.3 – See explosive –

341
214 -(0.05 >0.1

0.028) −0.0303 -(0.0167 0.0228
0.0106) −0.0034

sive 0.50 1.00 See explosive 1.75
sive 0.00 0.25 See explosive 1.75

0.2450 11.0137 0.7468 0.1470
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consistent with influx of material underneath. Compared to the total
deformation from 2001 to 2008, these displacements are significantly
larger over the short period of about half a year.

Although the horizontal data suggests a volcanic source, vertical
displacements are small or zero (Fig. 5). This is likely due to seasonal
loading, which is more prominent at higher elevations. Given the to-
pography and assuming a volcanic source under the volcano, this
counteracts an inflationary vertical signal. However, as mentioned
above loading does not affect horizontal motion as much as volcanic
sources, which gives us confidence in the volcanic origin of this signal.

As a result of these seasonal loading effects, searching for a source
using the vertical displacements (Fig. 5) could result in a biased
model. Therefore we attempt to find a source using only the
horizontal displacements at DUMM, RVBM, and RBED relative to
AC17. While the best fitting model for these horizontal displacements
is a closed conduit (Fig. 3), an F-Test suggests that the smaller χ2

value for this source does not justify the additional free parameter
above that of the Mogi model. Hence, we consider the Mogi source
at 21.75 km bsl with a volume increase of 0.1018 km3 about
3.25 km to the W and 4.00 km to the S of the last dome to be the
best model (Fig. 5). We will reassess this source model at a later
point using data that span all phases, at this point we will also derive
confidence intervals for the parameters.

4.3. Explosive phase (03/2009–04/2009)

The explosive phase spans only 14 days, which renders tectonic
and seasonal effects negligible, and we can use AC59 as a reference
site. From the onset of the first explosion on March 23, 2009, to the
last explosion on April 4, 2009, we see clear displacements at AC17,
DUMM, RVBM, and RBED (Figs. 2 and 6). All sites move down and to-
ward the vent, and give the largest signal of the sequence with up to
2 cm horizontal and 2.5 cm vertical motion (see Table 2).

We use the displacements at these 4 sites to estimate the source
parameters. A closed conduit model fits better than a Mogi model.
However, the inferred volume change of ΔV=−0.0275 km3 for this
model suggests a conduit radius of about 38 m and a pressure change
of 44 GPa, several orders of magnitude higher than lithostatic stress at
these depths (0.26–0.29 GPa, (Turcotte and Schubert, 2002)). This
stress regime is unphysical for a conduit, i.e. a dike would form to re-
duce such high pressures which a conduit could not withstand. Since
the deformation pattern does not support the formation of a dike, we
reject this model and search for a prolate spheroid with an unknown
semimajor–semiminor-aspect ratio using an implementation provid-
ed by Battaglia et al. (2012). We limit the maximum pressure change
to the lithostatic stress (when not limiting the pressure change to lit-
hostatic stress, the preferred source is a conduit with approx. 35 m ra-
dius, similar to the conduit model presented above). The best fitting
source is offset by 0.5 km to the East from the last dome. Its centroid
is at 9.17 15.17

6.92 km bsl, the semimajor axis is 4.5 >10
1.25 km long and the

radius is 0.475 >4.00
0.30 km (superscripts and subscripts refer to upper

and lower ends of confidence intervals at the 95% level). The inferred
volume change is −(0.05 >0.1

0.028) km3. Note that the unconstrained
values in the confidence intervals indicate that the bottom end of
the source is not well constrained by the data. The model fit is given
in Table 3 and shown in Fig. 6; an F-Test confirms that the improve-
ment in fit warrants the use of two additional free parameters com-
pared to the Mogi model.

4.4. Effusive phase (04/2009–06/2009)

After April 4, 2009, explosive activity ceased and the final,
persisting dome was built. As Fig. 2 indicates, AC17 is moving at
pre-eruptive rates after the explosive phase. Hence, we assume no
volcanic signal at this station and give the displacements relative to
this site (Fig. 7). Small displacements measured at RVBM and RBED
Please cite this article as: Grapenthin, R., et al., Geodetic observations du
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likely indicate the evacuation of small amounts of material from shal-
low to mid‐crustal depths. However, interpretation of these displace-
ments is difficult, as the dome emplacement creates a loading signal
at the surface which in turn is also obscured by uplift due to seasonal
melt as indicated by displacements at RGBY. DUMM shows the largest
subsidence signal which is likely related to significant lahar deposits
in the Drift River Valley (Waythomas et al., this volume). This is
supported by slight up-valley horizontal motion toward the thicker
deposits of the lahars.

Due to the site specific motion at DUMM and RGBY we use only
RVBM, and RBED to infer source parameters. The best fitting source
is a Mogi source at a depth of d=8.75 18.00

3.50 km bsl with a volume
change of ΔV=−(0.0034 0.0148

0.0012) km3. It is horizontally offset to the
North and to the East respectively by 1.75 km (Table 3). The conduit
model gives almost as good a fit, but the upper and lower ends are ba-
sically at the same depth, suggesting the extra parameter is not
warranted by the data.

Since the depth of the Mogi source coincides with the centroid of
the prolate spheroid inferred for the explosive phase, we test whether
using the explosive source with a different volume change provides
an acceptable fit. Indeed, the explosive source with a volume change
of ΔV=−(0.0167 0.0228

0.0106) km3 provides almost as good a fit
(χ2=0.7468) as the Mogi source (χ2=0.1470). An F-Test shows
the slight difference in χ2 does not justify the necessary 3 additional
free parameters for the Mogi model. Therefore, we favor the simple
interpretation that activity continued from the source of the explo-
sive phase (Table 3, Fig. 7), given the very small amount of data for
this phase.

4.5. Full period of unrest (08/2008–06/2009)

As the whole network was remeasured in a campaign in June
2009, we show the displacements between August 06, 2008, and
June 10, 2009 with respect to AC59 (Fig. 8A). The figure shows a
clear volcanic signal, which suggests that the necessity to use AC17
as reference station for the 2–6 months periods investigated above
was mainly due to seasonal effects. This time period, however,
spans most of the intrusion of material as well as the explosive and ef-
fusive activities; the displacements, in turn, reflect the superposition
of motion resolved in the individual phases above. This gives a very
undifferentiated view in terms of temporal evolution of the system,
but clearly shows that the motion at all stations is consistent with a
net evacuation of material. To confirm the robustness of our source
estimates, we compare the sum of individually modeled displace-
ments for each phase (precursory phase: Mogi source at 21.75 km,
explosive and effusive phases: prolate spheroid at 10.25 km with re-
spective volume changes listed in Table 3) to the larger dataset with
respect to AC59 (Fig. 8A).

The full model significantly overestimates the vertical displace-
ments at all sites, predicting uplift while most sites show subsidence.
The horizontal displacements are overestimated in magnitude for
some and underestimated for others; the azimuths of horizontal dis-
placements are significantly off at many sites. Generally, we can say
that the combined model does not predict the measured displace-
ments well. We believe this is mainly due to the poor constraints
we have on the precursory model. To extend our data set for that pe-
riod we predict the displacements at all sites using the source models
for the explosive and effusive periods (Table 3, Fig. 8B). Removing
these predicted displacements from the data, we get residuals that
contain the precursory signal plus any other non-volcanic signals
(Fig. 8C,E). While the vertical residuals in Fig. 8C,E are likely affected
by non-volcanic signals, the horizontal components at most stations
indicate an inflation signal. We use almost all stations to invert this
extended horizontal displacement data set for a precursory source.
In addition to the routine exclusion of RGBY we also exclude the sta-
tions QRRY, POLL and DUMM from our source estimations. Horizontal
ring the 2009 eruption of Redoubt Volcano, Alaska, J. Volcanol. Geo-
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motion at QRRY differs significantly in magnitude from the nearby
AC17. POLL shows a different direction in the horizontal, likely be-
cause it is on the far side of the Bruin Bay Fault to the SE of Redoubt.
DUMM is likely affected by a loading signal due to lahar deposits. We
found that inversions that include DUMM result in a significant in-
crease in model misfit and a preference for an unrealistically long
conduit from 2.25 km to 19 km depth with a very small volume in-
crease of just 0.0063 km3.

The best fitting source using the remaining stations is a single
Mogi source located at 13.50 17.33

10.17 km depth, 1.25 km to the S of the
last dome with a volume change of ΔV=0.0194 0.0340

0.0092 km3 (Fig. 9).
The fit of this model to the data residuals is shown in Fig. 8C.
Fig. 8D shows the fit of the sum of the models for explosive, effusive,
and this corrected precursory model.

Physically this source represents an injection of material at the
base of the prolate spheroid inferred from the explosive data. If we
proceed in a similar manner to the effusive phase and reuse the ex-
plosive source geometry varying the volume change only, we get a
best fit for ΔV=0.0278 0.0341

0.0214 km3. The fit of this model to the data re-
siduals is shown in Fig. 8E. Fig. 8F shows the fit of the sum of the
models for explosive, effusive, and this corrected precursory model.

The fits of both models are rather similar (χmogi
2 =14.75,

χps
2 =18.54) and not as good as for the other periods. An F-Test is

not as conclusive as for the effusive phase to decide whether the
slight improvement in fit of the Mogi model justifies the addition of
three parameters (F(3,14,0.05)=3.3439>1.1958). We therefore pro-
vide both models as possibilities— precursory inflation could have in-
volved either the same source as the other phases, or only inflation at
its lower depth limit.

4.6. Post eruption (06/2009–onward)

The time series with linear and seasonal trends removed (Fig. 2)
clearly shows an absence of consistent volcanic deformation after
June 2009. A small vertical offset at RBED is noted at the beginning
of June 2009, likely unrelated to volcanic activity due to its rapid na-
ture. DUMM does not show anything similar and RVBMwas not oper-
ational at this time, so the origin of this signal remains unexplained.

5. Short term displacements: picking up plumes

We estimate kinematic trajectories to investigate subdaily motion
for stations RVBM, DUMM, and RBED with respect to AC17. The sam-
pling interval for most receivers during the 2009 Redoubt eruption
was 30 s (AC17, RGBY sample at 15 s), which we use as the time res-
olution in the processing without any data decimation. Figs. 10–12
show the subdaily position time series from March 22 to April 05,
2009, for these three stations. Since the presented time series spans
15 days, they clearly resolve the long-term trend due to removal of
material at depth, which we investigated above (see Section 3).
Here, we did not attempt to remove multi-path effects (e.g., Larson
et al., 2007) as we do not interpret any small amplitude features
and the long time span allows us to discern whether the signals we
interpret repeat approximately daily. A good example of multipath
is the repeating signal in the vertical time series for RBED in Fig. 12.

Stations RVBM and DUMM experience significant spikes or out-
liers that correlate very well with the timing of explosions (shown
in light gray in Figs. 10 and 11). Of the 28 explosive events deter-
mined through seismicity (Bull and Buurman, this volume, Table 1),
17 plumes reach higher than 12 km asl. 12 of these induce position
Fig. 8. Displacements relative to AC59 from August 2008 to June 2009 spanning the full erup
forward models (black and white vectors). (A) Sum of displacements for the best fitting sour
data. (B) Sum of displacements due to explosive and effusive sources only (prolate spheroid
vectors in (C) and (E). (C) Fit of best Mogi model (black and white vectors, see Table 3) to
source model derived from (C) as precursory source model. (E) Best fitting volume change
vectors). (F) Sum of displacements for all source models using the source model derived fr
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spikes at RVBM where we see no false-positives during the explosive
phase. 3 plumes induce position spikes at DUMM; 1 of these is not
seen at RVBM (March 28, 23:29 UTC, Event 17). At DUMM we see
one false-positive indicated by arrow A in Fig. 11 and discussed
below. The remaining 11 plumes reached altitudes below 8.5 km or
the plume heights could not be determined.

As shown by Houlié et al. (2005a) for Miyakejima and Houlié et al.
(2005b) for Mt. St. Helens, these changes in position may be due to
path delay effects induced by ash plumes injected into the atmo-
sphere during explosions. The presence of ash increases the travel
time of signals from the satellite to the station. This inhomogeneous
path delay is not modeled when tropospheric path delay effects are
estimated during the GPS solution and it affects satellite–station-
pairs that cross the vent or ash rich plume (Houlié et al., 2005a). In
cases where base station and rover are on opposite sites of the vent,
an apparent baseline lengthening occurs. The RVBM time series
(Fig. 10) shows this very well as RVBM is consistently offset to the
SW and up during these events. In addition to these spikes in position
at RVBM, the associated RMS values (Fig. 10, lowest panel) reported
by track show a spike, indicating a poor fit to the data at these
times. As track does not report postfit phase residuals individually
for each satellite, we refer to the values reported by GIPSY from kine-
matic network solutions that we have run in parallel (we do not show
time series from these as artificial position offsets at day boundaries
occur in the GIPSY solutions when using the JPL orbit and clock
products).

Figs. 13 and 14 show phase RMS plotted along the satellite sky
tracks for March 26 and April 04, 2009, respectively. These skyplots
cover the times during which event 08 and 19 occurred (see Table 1
in Bull and Buurman, this volume). In the following we first explain
signals related to these events and in Figs. 16 and 17 we cover a few
anomalies where we do not see a plume related signal or see a very
large non-plume induced effect. Details on how to read these figures
are given in the caption of Fig. 13.

At almost 19 km asl, the plume of event 08 on March 26, 2009
(17:24 UTC), is one of the largest of the entire eruption (Bull and
Buurman, this volume; Schneider and Hoblitt, this volume). Bull et
al. (2012) show tephra iso-mass contours for this event extending
to the S and SSE of the vent. The contours cross Cook Inlet and highest
ash-fall was sampled up to the shore. Fig. 13 shows the phase resid-
uals for satellites visible from 17:00 to 18:30 UTC. Both AC17 and
RBED show small residuals at the time of event 08. They share a sim-
ilar spike for PRN 21. RVBM on the other hand shows residuals dis-
tinctly different from those at AC17 at the time of the explosion
(marked in red in Fig. 13). PRN 26 and 15 to the ENE, PRN 21 to the
E and PRN 18 to the SE show large spikes coinciding with the explo-
sion. At DUMM a residual for PRN 16 in the southern sky seems
more pronounced than at the other stations. These observations are
consistent with a plume indicated by the tephra dispersion map of
Bull et al. (2012) and remote sensing observations of the plume
(Webley et al., this volume). Given the narrow footprint of this
plume and its direction combined with the satellite distribution
only the clear lack of signal of PRN 22 at RBED seems surprising. We
believe this can be explained by its low elevation above the horizon
(30°)— the satellite may have been below the thick part of the plume.

On April 04, 2009, the plume went to the SE, and left a very nar-
row footprint (Bull et al., 2012). Fig. 14 shows that AC17 and RBED
see about the same level in noise for all satellites with slightly higher
amplitudes in phase RMS at RBED for PRN 3, 6, and 16 in the WNW
sky. The general noise characteristic for these satellites can be
tion. Clearly, we see a net deflation, i.e., net loss of material. Each panel shows different
ces from preliminary precursory, explosive and effusive periods provides poor fit to the
). The residuals, inferred to represent the precursory deformation are plotted as colored
residuals (colored vectors). (D) Sum of displacements for all source models using the
of explosive source model (black and white vectors, see Table 3) to residuals (colored
om (E) as precursory source model.
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All Model Fit: 06−AUG−2008 to 10−JUN−2009 (wrt AC59) Effusive+Explosive FIT: 06−AUG−2008 to 10−JUN−2009 (wrt AC59)

Effusive+Explosive Residual Fit: 06−AUG−2008 to 10−JUN−2009 (wrt AC59) Corrected All Model Fit: 06−AUG−2008 to 10−JUN−2009 (wrt AC59)

Effusive+Explosive Residual Fit: 06−AUG−2008 to 10−JUN−2009 (wrt AC59) Corrected All Model Fit: 06−AUG−2008 to 10−JUN−2009 (wrt AC59)
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explained by a ridge to the WNW above RBED, which makes this sta-
tion more sensitive to low angle signals. At the time of Event 19, from
13:58 to about 15:00 UTC (see Table 1 in Bull and Buurman, this
volume), most of the satellites are in the southerly sky or rather low
to the WNW (PRN 16) and ENE (PRN 10). Both AC17 and RBED
seem to have an undisturbed atmosphere between them and the sat-
ellites (compare to station positions in Fig. 1). RVBM and DUMM,
which are to the W and ENE of the vent, however, show distinct
phase residuals. At about 14:30 UTC PRN 10 shows a big spike in
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phase RMS at RVBM while the residual for this satellite at DUMM is
similar to AC17 and RBED. Smaller spikes at about the same time
are visible to the WNW (PRN 16), SSE (PRN 30), and ESE (PRN 24,
29) at RVBM. The case is rather different for DUMM which shows
the largest spikes for PRN 31, 21, and 30 from the SW to the SSE.
While the residuals at DUMM seem consistent with disturbance by
the plume, the directionality of the large spike at RVBM seems to cor-
respond to the location of pyroclastic density current deposits (com-
pare Fig. 4 in Bull and Buurman, this volume). If we remove the
satellites from the processing when they experience plume-related
path delays, we can reduce the number of outliers and reported
RMS significantly (Fig. 15) which underlines the impact of the
unmodeled disturbances of the atmosphere that increase the phase
delay (Houlié et al., 2005a, 2005b).

Although we seem to pick up many plumes in the phase residuals
at RVBM, a few, some of which reached significant altitudes, are ‘mis-
sed.’ In Fig. 16 we show the skyplots of DUMM and RVBM for March
29, 2009, from 3:00 to 5:00 UTC spanning event 18, which erupted
at 3:23 UTC with a plume reaching up to 14.6 km elevation
(Schneider and Hoblitt, this volume; Bull and Buurman, this
volume). Comparing the skyplots with the tephra dispersion given
by Bull et al. (2012), it appears that we face a very unfortunate satel-
lite constellation with no signals traveling through the dense plume.
The later, more evolved and dispersed plume seems not to affect
the signal significantly.

The last skyplot in Fig. 17 covers the time of the large outlier at
station DUMM onMarch 23, 2009, which shows up right at the begin-
ning of the time series in Fig. 11 and coincides with event 01 at about
06:38 UTC (marked by arrow ‘A’). RVBM and RBED are running at this
time but lack this feature (compare to Figs. 10 and 12). Neither the
phase residuals for individual satellites nor the RMS value in Fig. 11
indicates anything unusual for this epoch. Here, we assume an incor-
rectly resolved phase ambiguity or other problems with the solution
caused this spike.

The DUMM time series in Fig. 11 contains one last distinctive fea-
ture that begins in the evening of April 3 and stops early on April 4
and remains unexplained (marked by arrow ‘B’). No other station
3 30/03 31/03 01/04 02/04 03/04 04/04 05/04

 in 2009

p, and RMS). Black lines are 30 s solutions, red lines are half-hour sliding window av-
olume). Large plumes result in phase delay and hence position changes of RVBM due to
005b). (For interpretation of the references to color in this figure legend, the reader is
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shows any similar deformation. Although an earthquake swarm oc-
curred during this time (Buurman et al., this volume), it seems rather
unlikely for this to cause such a deformation pattern. The phase resid-
uals appear normal during this time and the pattern is inconsistent
with subsurface migration of material, which we would expect to in-
duce uplift first. Also such deformation would be seen at RVBM and
RBED as well. From the amplitudes of the other days we can infer
that this signal is too large to be multi-path. One possible explanation
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is loading deformation due to a pulse of water/mud flowing down
Drift River Valley.

6. Discussion

As explained in Section 2 and depicted in Fig. 1 (right), the data
situation for the 2009 Redoubt eruption is not optimal and the mea-
sured volcanic deformation signals are not particularly large. This
3 30/03 31/03 01/04 02/04 03/04 04/04 05/04
 in 2009

ut for station RBED.
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limits our ability to discriminate between volcanic and non-volcanic
signals (see, for example, Section 2), which is complicated by the
lack of detailed data for processes dominating changes in hydro-
sphere and cryosphere in this remote region.

Splitting the signal into temporal phases affects the signal statis-
tics (e.g., uncertainties increase), but the sum of displacements of
the individual eruption phases is within the uncertainty of the dis-
placements observed for the entire period. This argues that splitting
the signal introduces only small errors in our source inversions. The
difference seems to be driven mainly by the small signal to noise
ratio for the precursory and effusive periods. However, we demon-
strated in Section 5 that constraining the precursory source to a ge-
ometry that fits the data reasonably would have been impossible
without investigating the phases separately and removing deflation-
ary signals from the campaign data set.

While the F-Test provides a slight preference toward inflation of
the prolate spheroid inferred from explosive deflation, we find the in-
flation of a Mogi source at the base of this spheroid to be an equally
possible scenario driving precursory deformation. The horizontal off-
set between the precursory Mogi source and the prolate spheroid is
negligible given the small signals and superimposed, unmodeled pro-
cesses as well as the small offset over depth ratio. The sum of dis-
placements of final source models for the individual eruption phases
Please cite this article as: Grapenthin, R., et al., Geodetic observations du
therm. Res. (2012), doi:10.1016/j.jvolgeores.2012.04.021
(Table 3, bold) with either precursory source produces a good fit
when compared to the large data set that includes displacements
for the whole network spanning the time from summer 2008 to sum-
mer 2009 (Fig. 8D,F). Consequently, we provide both models as pos-
sible explanations for deformation during the precursory phase.

The source depths for both sources have large uncertainties asso-
ciated with them, but locate in the general vicinity of each other
(Table 3). The precursory Mogi source locates somewhat below the
prolate spheroid making a case for magma influx at the spheroid's
base. The prolate spheroid reaches up to shallower levels. It remains
speculation whether this structure actually connects to a second
small reservoir at 2–4.5 km bsl as suggested by, e.g., Coombs et al.
(this volume) and Werner et al. (this volume). If a reservoir at these
depths exists, the material removed must have been smaller than
the network detection limit, e.g., about 0.002 km3 for a Mogi source
(Fig. 3), which is an underestimate as we are not taking magma com-
pressibility into account. Immediate replacement of material evacuat-
ed from such a source would be another possible explanation for the
lack of measured deformation associated with a shallow reservoir.

The lack of measured deformation from 2001 to 2008 (Fig. 4) and
apparent lack of deformation from 1991 to 2001, combined with only
a small precursory inflation (Table 3) indicates that much of the ma-
terial that erupted in 2009 had been in place prior to 2001 and
ring the 2009 eruption of Redoubt Volcano, Alaska, J. Volcanol. Geo-
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probably prior to 1991. No new magma influx occurred until the
onset of the precursory inflation beginning in May 2008. Although it
is likely that the magma was leftover from the 1989–90 event, a
more successful analysis of the 1991 GPS campaign data would be
necessary to confirm this hypothesis.

Bull and Buurman (this volume) derive a total volume of erupted
material between 0.08 and 0.12 km3 which is about 1.5 times more
than our best fit estimate for the explosive and effusive phases
(0.0667 km3). We have to keep in mind that the uncertainty intervals
for the erupted volumes are large. Using the upper limits of erupted
materials we can explain up to about 0.12 km3 of erupted material;
the upper limits of magma volume correspond to deeper limits of
source depth. This indicates a very good agreement between geo-
detically derived volume estimates and the actual erupted volume,
as our volume estimates assume incompressible magma. For Mount
St. Helens, Mastin et al. (2008) report 3–4 times as much erupted vol-
ume as inferred intruded material while Voight et al. (2010) similarly
suggest a ratio of 6 for incoming magma over geodetically measured
reservoir wall volume change at Soufriére Hills Volcano. Bull and
Buurman (this volume), however, found very low vesicularity
(b10%) for the material erupted during the eruption. This reduces
magma compressibility, which is mainly controlled by the presence
Please cite this article as: Grapenthin, R., et al., Geodetic observations du
therm. Res. (2012), doi:10.1016/j.jvolgeores.2012.04.021
of bubbles due to exsolved gases in the magma. These gases may
have escaped in the time since emplacement in 1989–90 or even be-
fore then.

The discrepancy in volume of the final dome as derived by Bull
and Buurman (this volume) and Diefenbach et al. (this volume)
(0.054 km3) and our estimate of 0.0167 km3 for the effusive phase
may support the hypothesis of erupted material being drawn from a
shallow 2–4.5 km reservoir (Coombs et al., this volume; Werner et
al., this volume) and instantly replaced with fresh magma from
depth. Decompression due to rise of the magma may account for
the 3.2 times more voluminous erupted material (dense rock equiva-
lent) at the surface, compared to the geodetically derived effusive
volume.

7. Conclusions

This paper summarizes the geodetic observations during the 2009
Redoubt eruption and provides interpretations of these data. We in-
vestigate changes in long term time series of daily GPS positioning so-
lutions to infer characteristics of the magmatic source feeding this
event. Furthermore, we find a combination of kinematic position tra-
jectories and satellite phase residuals plotted along satellite sky tracks
ring the 2009 eruption of Redoubt Volcano, Alaska, J. Volcanol. Geo-
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as seen by individual GPS stations a helpful tool for eruption plume
detection.

7.1. Magmatic process

We conclude that displacements due to a source in the mid-crustal
region (7–13 km below sea level) beneath the final dome of the 2009
eruption are seen during all stages of the eruption. No deformation
was observed during 2001–2008, until the start of the precursory
phase. Detected pre-eruptive intrusion of new material at depth
began as early as May 2008 at a steady rate (compare to deep long
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period earthquakes below 20 km beginning in December 2008 dis-
cussed by Power et al. (this volume)). This culminated in a reversal
of displacements during the explosive activity from March 23–April
4, 2009. Thus, the geodetic precursors to the eruption preceded any
seismic precursors although they were not identified until later.
Note that we do not see any deformation associated with evacuation
of material before March 23, 2009, although a first explosion was
reported for March 15, 2009 (Table 1 in Bull and Buurman, this
volume). During the explosive phase and the effusive phase (April
5–June 1, 2009) we see a net loss of material from the storage region.
This suggests that some of the erupted material was already in place
DUMM
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. 13 describes the setup of this figure. Event 18 (Bull and Buurman, this volume) occurs
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Fig. 17. Skyplot of phase residuals per satellite for DUMM for March 23, 2009, Fig. 13
describes the setup of this figure. The big spike in Fig. 11 coincides with event 01 at
about 06:38 UTC, but is not associated with any unusual residuals.
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or emplaced without being detected. One or all of the following
processes could be responsible for this: (a) compensation of displace-
ments due to smaller intrusions by ductile processes within the edi-
fice, (b) intrusions of material prior to 2001, or (c) evacuation of left
over material from the previous eruption in 1989–90.

Coombs et al. (this volume) suggest that unerupted hot, gas-rich
magma heated and mobilized magmas residing in a shallow reservoir
at 2–4.5 km bsl. We see possible deformation due to removal at these
depths considering the uncertainty in location of the upper end of our
suggested prolate spheroid. One hypothesis (Fig. 18) that ties deep
seismicity (Power et al., this volume), petrology (Coombs et al., this
volume), and our observations together is a two reservoir system in
the mid- to shallow crust. Material from a diffuse magma source at
25–38 km (Power et al., this volume) flowed in at about 13 km
depth beginning as early as May 2008. This reheated and remobilized
residing material in the prolate spheroid from 7 to 11.5 km resulting
in migration to shallower depth (2–4.5 km; Coombs et al. (this
volume)). By end of January beginning of February 2009 shallow seis-
mic tremor set on (Buurman et al., this volume) suggesting reheating
Fig. 18. Cartoon illustrating the evolution of the Redoubt Volcano plumbing system as sugge
this volume), petrology (Coombs et al., this volume), and our observations together by pro
migrated to about 13 km depth beginning as early as May 2008; reheating and remobilizing r
2–4.5 km depth (Coombs et al., this volume); supported by shallow seismic tremor beginnin
23 March 2009 on. The mix of fresh and reheated material from the deeper stages of the syste

Please cite this article as: Grapenthin, R., et al., Geodetic observations du
therm. Res. (2012), doi:10.1016/j.jvolgeores.2012.04.021
and remobilization of material residing in the shallower reservoir; all-
owing gases to pass. As this material, leftover from the 1989–90 event
or earlier, extruded beginning on 23 March 2009, the mix of fresh and
reheated material from the deeper stages of the system replaced it
and made the shallow removal undetectable by geodesy. In this
case, the resulting pressure/volume change reflects only the deeper
source, which experienced net evacuation.

7.2. Ash plume detection in subdaily positioning solutions

We have related systematic spikes in subdaily positioning solu-
tions to phase delays for station–satellite-pairs that cross dense
parts of volcanic plumes. While the technique of detecting ash plumes
with GPS has been described before by Houlié et al. (2005a, 2005b),
this possibility seems not generally included in monitoring or data
analysis efforts and is, in fact, not well explored. We show that plot-
ting the phase residuals along the sky tracks of satellites provides
easy access to plume azimuths. A high number of satellite–station
pairs crossing a vent should be desired when geodetic networks for
volcano deformation monitoring are designed. Kinematic solutions
in near real-time could be used for plume sensing and verification
and hence assist remote sensing efforts to fill some of the gaps creat-
ed by slow satellite repeat times or cloud cover. From our results it is
obvious that standard sampling rates of 15–30 s are sufficient to re-
solve the plume signal.

While intriguing, this certainly will not detect all plumes. We
show that gaps in vent crossing station–satellite pairs may prohibit
detection of plumes or ash concentrations may not be large enough
to affect the signal significantly. Therefore, this technique should be
seen as complementary to seismic and remote sensing monitoring.

Future work is necessary to determine ash concentrations and
plume heights that affect the GPS signal quality significantly and
hence determine detection limits. Results from such studies might
in turn allow to estimate plume parameters such as density from
GPS noise characteristics. Furthermore, reprocessing of any existing
data set that indicates the existence of a plumewith Ultra-rapid orbits
or real time orbit products should clarify whether real time detection
is feasible.
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