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The problem of phase unwrapping in two dimensions has been studied extensively in the past two decades, but
the three-dimensional (3D) problem has so far received relatively little attention. We develop here a theoretical
framework for 3D phase unwrapping and also describe two algorithms for implementation, both of which can
be applied to synthetic aperture radar interferometry (InSAR) time series. We test the algorithms on simulated
data and find both give more accurate results than a two-dimensional algorithm. When applied to actual In-
SAR time series, we find good agreement both between the algorithms and with ground truth. © 2007 Optical
Society of America

OCIS codes: 100.6890, 120.3180, 280.6730, 350.5030.

1. INTRODUCTION
Phase unwrapping is the process of recovering unambigu-
ous phase values from phase data that are measured
modulo 2! rad (wrapped data). Data of this form are
found in many applications, but the advent in the early
1990s of synthetic aperture radar interferometry (In-
SAR), in particular, spurred interest in developing reli-
able two-dimensional (2D) phase unwrapping algorithms
[1–5]. Recent exciting areas of development within InSAR
include persistent scatterer (PS) processing [6–9] and the
processing of multiple conventional interferograms simul-
taneously [10,11]. Both of these applications provide
three-dimensional (3D) wrapped phase data, the third di-
mension being that of time. Treating the unwrapping
problem as one 3D problem as opposed to a series of 2D
problems leads to an improvement in the accuracy of the
solution in a similar way to which 2D unwrapping pro-
vides an improvement over one-dimensional (1D) meth-
ods.

The true phase difference between two neighboring
data points for which only wrapped phase values are
known has an ambiguity that is an integer number of
2! rad. For unwrapping purposes it is usually assumed
that the sampling rate is high enough over most of the
data set that aliasing is avoided. In other words, the true
absolute phase difference between two neighboring data
points is generally less than ! rad. The unwrapping prob-
lem then reduces to integration of the phase difference be-
tween neighboring data points, with one proviso: only cer-
tain integration paths may be taken. Specifically, we
should not allow integration paths between two adjacent
points when the absolute difference between the two is
greater than !, a condition referred to as a phase discon-
tinuity in the rest of this paper. Phase discontinuities oc-
cur in areas that are locally undersampled or where true
discontinuities occur in the data, e.g., due to layover in a

topographic interferogram or a surface-breaking fault in a
deformation interferogram. Given the position of the
phase discontinuities the problem is then easily solved, as
long as the data sampling is dense enough that there are
no disconnected regions, i.e., regions with no allowable
paths connecting them. However, we do not generally
know a priori where the phase discontinuities occur and
the major goal of most unwrapping algorithms is, there-
fore, to best determine their positions.

In a 1D problem, any phase discontinuity will cause a
regional disconnect. Furthermore, the only mechanism by
which we can estimate the position of the phase disconti-
nuities is by making assumptions about the functional
form of the phase variation. Moving from one dimension
to two dimensions is helpful in two respects. First, there
are more potential paths to choose from, increasing the ef-
fective sampling, which in turn decreases the chances of
disconnected regions. Second, we are provided with clues
as to the position of the phase discontinuities by the pres-
ence of residues in the data. A residue, or phase singular-
ity, is a point around which integrating the phase gradi-
ent does not return zero [1]. We might expect, therefore,
similar benefits when moving from two dimensions to
three and, indeed, this is the case. The effective sampling
is again increased, decreasing the chance of disconnected
regions. We are also provided with further clues as to the
positions of phase discontinuities because residues, which
are isolated points in two dimensions, are closed loops in
three dimensions [12], thus providing a priori information
on how residues are interconnected by phase discontinui-
ties.

Several algorithms have recently been developed that
take advantage of the third dimension including branch-
cut algorithms [12–16] and an integer least-squares algo-
rithm [17]. None of these algorithms are directly appli-
cable to InSAR time series, however. We develop here a
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theoretical minimum Lp-norm framework for 3D phase
unwrapping and formulate the problem for the general
case. We have not, as yet, developed an Lp-norm algo-
rithm to find the optimal solution for the general case, but
we describe here an algorithm we implement to find the
solution in some cases. We also describe a stepwise 3D al-
gorithm that can be applied in all cases. This algorithm is
less accurate than the Lp-norm algorithm for cases where
our current implementation of the Lp-norm algorithm is
applicable. However, as the stepwise algorithm is appli-
cable in the general case, it is still useful.

We show that both algorithms give more accurate re-
sults than repeated application of a 2D algorithm. We
demonstrate the algorithms on a well-sampled case, PS
time series acquired over Lost Hills in California, and
show that both methods are reliable and robust. The step-
wise algorithm outperforms the Lp-norm algorithm on a
less well-sampled case, PS time series acquired over Long
Valley caldera in California, as verified by agreement
with ground truth.

Notationally, we use the terms “vertices” for data
points and “edges” for connections between neighboring
data points. Note that these are not equivalent to the
“nodes” and “arcs” used in network approaches to phase
unwrapping [3,18], which refer to the locations and con-
nections of phase-difference loop integrals, rather than
the data points themselves.

2. THEORY OF THREE-DIMENSIONAL
UNWRAPPING
In 2D phase data, neighboring phase discontinuities link
to form a “discontinuity network,” which resembles a tree-
like structure [1]. Residues occur at points along the dis-
continuity network when the total phase skipped by
phase discontinuities around a point changes, including
most points where the discontinuity branches and at dis-
continuity termini. Often, one or more residues lies out-
side the observed region, and the discontinuity network
appears to terminate at a region boundary.

In three dimensions, neighboring phase discontinuities
link to form a “discontinuity surface” (see Fig. 1), across
which the phase change is greater than ! in magnitude.
Any 2D slice through a discontinuity surface will result in
a discontinuity network, which is bounded by residues at
the termini from 2D theory. This implies that a disconti-
nuity surface must be bounded at all edges by residues.
As the edge of any surface is closed loop, the residues

along a discontinuity surface edge also form a closed loop.
Furthermore, it can be shown that all residues, including
those within discontinuity surfaces, form loops in 3D
space [12,16]. These loops are referred to in previous pub-
lications as “phase singularity loops” [12,16], but we use
the term “residue loop” to be consistent with our use of
the term “residue” to describe phase singularities. Wher-
ever a residue loop intersects a 2D data array a residue is
detectable. Part, or parts, of a residue loop may lie outside
the sampled volume, in which case we refer to the parts
that lie within the sampled volume as “truncated residue
loops.” Discontinuity surfaces associated with truncated
residue loops appear to terminate at one or more of the
sampled volume boundaries.

There is a special type of phase discontinuity in 2D
space that produces no residues, which is a closed loop
(not to be confused with a residue loop in 3D space). This
occurs when, due to undersampling, an entire region is
isolated from the rest of the data by a phase discontinuity.
In this case it is not possible to unwrap reliably in two di-
mensions without making assumptions about the func-
tional form of the phase variation. The equivalent in 3D
space is a closed surface, which has no edges. In this case
it is not possible to unwrap reliably in three dimensions
without making assumptions about the functional form.

A. Single-Cycle Discontinuity Surfaces
Single-cycle discontinuity surfaces are those where the
discontinuity is always a single phase cycle. In this case,
residue loops occur at all edges and branches of the sur-
face and never within the surface. The simplest surface is
an open surface bounded by one edge only (Fig. 1). Pro-
vided it cuts the edge, any 2D slice intersecting the sur-
face will result in a discontinuity line connecting a posi-
tive residue to a negative residue, which is the simplest
possible discontinuity network in two dimensions. Just as
discontinuity networks in two dimensions can branch, so
can discontinuity surfaces in three dimensions. A single-
cycle 2D branch point will result in a residue as in Fig.
2(a), Similarly a single-cycle 3D branch line will result in
a residue line, which will connect with an edge to com-
plete a residue loop, e.g., Fig. 2(b). Branching surfaces can
therefore be considered as multiple, touching, simple sur-
faces. A single-cycle discontinuity surface can also be
bounded by multiple edges resulting in multiple residue
loops, e.g., a surface in the form of a cylinder or catenoid.
These surfaces naturally contain 2D closed-loop disconti-
nuities. In other words, they are a result of undersam-
pling in two dimensions.

Fig. 1. (Color online) Simple phase discontinuity surface inter-
secting a 2D data set. The surface is bounded by a residue loop.
Where the surface intersects the 2D data set results in a discon-
tinuity line, which is bounded by a positive and a negative resi-
due, arising where the residue loop intersects the data set.

Fig. 2. (Color online) Single-cycle branch in (a) 2D and (b) 3D.
The numbers in (a) represent unwrapped phase values in cycles,
the lines represent single-cycle discontinuities, and the dot rep-
resents a residue at the branch point. In (b), the surfaces repre-
sent single-cycle discontinuity surfaces and the lines represent
residue loops, with the dashed part being the branch line.
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B. Multiple-Cycle Discontinuity Surfaces
Multiple-cycle discontinuity surfaces are those that in-
clude phase discontinuities greater than one cycle. The
relationship between multiple-cycle discontinuity sur-
faces and residue loops is more complex. Residue loops
still occur at all edges, but not necessarily at all branches,
and also occur internally on the surface (see Fig. 3).

Existing 3D branch-cut algorithms [12,14–16] make
the assumption that discontinuity surfaces are (a)
bounded by only one residue loop and (b) have no internal
residue loops. Only when this is the case does the ambi-
guity of pairing positive and negative residues, which ex-
ists in two dimensions, disappear. In the case of multiple-
loop surfaces, that can be single or multiple-cycle,
residues may be paired between the loops, not only within
each loop.

C. Mimimum Lp-norm Framework
A framework was provided by Ghiglia and Romero [2]
that unifies many of the unwrapping approaches in two
dimensions. Phase unwrapping is expressed as an optimi-
zation problem within this framework. The goal is to find
the solution that minimizes an objective function of the
form:

!
i,j

wi,j
"x#$"#i,j

"x# − "$i,j
"x#$p + !

i,j
wi,j

"y#$"#i,j
"y# − "$i,j

"y#$p, "1#

where "#"x# and "$"x# are the x direction components of
the unwrapped and wrapped phase differences, respec-
tively; "#"y# and "$"y# are the equivalent y direction com-
ponents; and w represents user-defined weights. The
summations are carried out in both x and y directions
over all i and j, respectively. This is referred to as an
Lp-norm objective function by Chen [19], although,
strictly speaking, to meet the condition of positive scal-
ability the sum must be raised to the power of 1/p, and p
must be greater than or equal to 1. For continuity, how-
ever, we follow the convention of Chen [19] in referring to
the solution that minimizes the above function as an
Lp-norm solution for p%0, and note that for p%1 the so-
lution that minimizes this objective function also mini-
mizes the true Lp-norm. This framework can be extended
to 3D by minimizing an objective function of the form:

!
i,j,k

wi,j,k
"x# $"#i,j,k

"x# − "$i,j,k
"x# $p + !

i,j,k
wi,j,k

"y# $"#i,j,k
"y# − "$i,j,k

"y# $p

+ !
i,j,k

wi,j,k
"z# $"#i,j,k

"z# − "$i,j,k
"z# $p, "2#

where "#"z# and "$"z# are the phase difference compo-
nents in the third dimension, and the summations are ex-
tended to the z direction over all k.

An additional constraint is that of “congruence,” mean-
ing that the unwrapped phase values differ from the
wrapped phase values only by integer multiples of 2!. Al-
gorithms based on minimization of L0- and L1-norms typi-
cally enforce congruence, while L2-norms often do not,
due to the way in which they are implemented. The result
of not enforcing congruence, however, is to systematically
underestimate true unwrapped phase gradients [4,20], so
congruence is desirable.

In two dimensions at least, L0-norm solutions are seen
empirically to give more accurate solutions than minimiz-
ing other Lp-norms [4,21] and, hence, we might expect
this to be the case in three dimensions. However, finding
the solution that minimizes the L0-norm is a nondeter-
ministic polynomial-time hard (NP-hard) problem even in
two dimensions [19]. Thus, for all practical purposes, it is
impossible to determine the exact solution, although vari-
ous methods have been implemented in two dimensions
that find an approximate solution, e.g., using network-
flow theory [3,18]. Here, we do not attempt to find the
L0-norm solution for the general case but, instead, we
consider higher order norms.

If congruence is enforced, the only difference between
an L0- and an L1-norm is that the latter penalizes
multiple-cycle discontinuities over single-cycle disconti-
nuities [19]. Increasing p further penalizes multiple-cycle
discontinuities and in the limit p→& single-cycle discon-
tinuities are always selected over multiple-cycle disconti-
nuities. Clearly then, if there are multiple-cycle disconti-
nuities present, the L&-norm solution will not be correct,
but in the case where only single-cycle discontinuities ex-
ist it will be identical to the L0-norm solution. In other
words, in the case where the data and sampling are such
that there are no multiple-cycle discontinuities, the
L&-norm solution is also the best solution within the
Lp-norm framework. Most interferograms that include to-
pographic signature contain multiple-cycle discontinui-
ties due to the presence of layover, and the L&-norm is
therefore not suitable. However, for interferograms where
the topographic signature has been mostly subtracted, as
in most deformation signal analyses, the L&-norm solu-
tion may be useful.

Fitting an area-minimizing “minimal surface” to every
residue loop gives a solution with no multiple-cycle dis-
continuities, yielding a congruent minimum L&-norm so-
lution. An L&-norm solution with equal weights, wi,j,k,
would give more weight to more densely sampled regions
and hence tend to place discontinuity surfaces in less
densely sampled regions. To avoid this bias, wi,j,k can be
chosen to normalize by sampling density. A minimal sur-
face automatically gives the solution to the problem with
normalized values of wi,j,k, as it is not biased by sampling
density. Strictly speaking the solution that minimizes the

Fig. 3. (Color online) Multiple-cycle discontinuity surface. The
loops represent residue loops, the right loop bounding the edge of
the surface and the left loop separating the 2! phase discontinu-
ity region of the surface from the 4! discontinuity region. Note
that an L&-norm solution would place a minimal surface within
each residue loop.
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L&-norm could include single-cycle discontinuity surfaces
that are bounded by multiple loops, which result in
closed-loop discontinuities in 2D. Although we expect
these surfaces to be rare in well-sampled data sets, fitting
a minimal surface to every loop does not allow for this
type of surface, hence we refer to it as a quasi-L& ap-
proach. Existing branch-cut algorithms [12,14–16] also
fall in this class, although the ways in which truncated
residue loops are handled by these algorithms do not
minimize the L&-norm for the general case.

In the following section we describe an algorithm to
implement the quasi-L& approach that applies for all resi-
due loops, including those that are truncated. In the case
where the data are sampled sufficiently well that there
are no closed-loop or multiple-cycle discontinuites, and
the underlying nature of the data is such that these dis-
continuity types do not arise, we expect this solution to be
identical to the L0-norm solution. For more general appli-
cations, a true L0-norm solver should be developed and a
network-flow model [3,18] may provide a means to
achieve this. Optimization using generalized, nonlinear
cost functions, as done in two dimensions by Chen and Ze-
bker [5], could lead to a more accurate solution still, par-
ticularly in the case of InSAR, as we might expect cost
functions in the space-time domain to be quite different to
those purely in the spatial domain.

3. QUASI-L!-NORM
THREE-DIMENSIONAL ALGORITHM
We have developed an algorithm to unwrap 3D data that
are irregularly sampled in two dimensions in order to un-
wrap InSAR PS time series, which are distributed irregu-
larly in space. Therefore, the objective function from Eq.
(2), which we seek to minimize, is modified to

!
i,j

wi,j
"s#$"#i,j

"s# − "$i,j
"s#$p + !

i,j
wi,j

"t#$"#i,j
"t# − "$i,j

"t#$p, "3#

where superscript s represents a phase difference be-
tween two neighboring data points in the two spatial di-
mensions, superscript t represents a phase difference in
the time dimension, and the summations are carried out
in 2D space, over all i, and, in time, over all j.

The algorithm allows for residue loops to be terminated
any number of times at any number of data volume
boundaries. For each loop, the algorithm selects a phase
discontinuity surface that is a minimal surface, equiva-
lent to the surface formed by an equilibrium soap film in
zero gravity. In this algorithm we assume that each dis-
continuity surface is bounded by only one loop, as dis-
cussed in Subsection 2.C.

A. Residue Identification
Residues are identified by dividing the 3D data into a
number of faces with a data point at each vertex, calcu-
lating the difference in phase along edges between adja-
cent vertices, wrapping the difference into the interval −!
to !, and integrating the differences around the face. A
nonzero sum indicates a residue. In two dimensions, if the
data are regularly sampled the simplest approach is to di-
vide the data into rectangular faces. If the data are ir-
regularly sampled (sparse), Delaunay triangulation can

be used to divide the data into triangular faces [22]. Simi-
larly, in three dimensions, if the data are regularly
sampled the simplest approach is to divide the data into
rectangular faces in three orthogonal orientations. How-
ever, to be applicable to InSAR data sets that are sparse
in the two spatial dimensions, we use Delaunay triangu-
lation to define edges connecting the data points within
the two spatial dimensions and integrate around each tri-
angle. In the time dimension, we assume that the data
are regularly sampled, in the sense that for every sample
in time the phase is sampled at every point in the two
spatial dimensions. Therefore, we can define edges that
divide the data into rectangular faces and integrate
around the rectangles. The faces in this irregular grid
outline a series of wedge-shaped elements, each with two
triangular faces and three rectangular faces (see Fig. 4).
The algorithm could be extended to the case where data
are irregular in all three dimensions by connecting the
data points through Delaunay tetrahedrization resulting
in tetrahedron-shaped elements.

B. Linking Residues
As argued in Section 2, residues form loops in 3D space
that are detectable wherever they intersect a face. This
implies that any loop entering a wedge element through
one face must exit the wedge element through another
face [see Fig. 4(a)]. Residues can be linked, therefore, by
tracing the loops through each wedge element in turn, un-
til the loop either closes on itself or a data volume bound-

Fig. 4. (Color online) Residue identification and connection.
Each apex represents a data point and the connecting lines rep-
resent the arcs along which phase differences are calculated.
Residues, indicated by a + or −, are identified by integrating arc
phase differences around each triangular or rectangular face. (a)
shows an element with residues on two faces. A residue loop en-
ters the element through one face and exits through the other. (b)
shows an element with residues on four faces. The four residues
could be linked to form either two separate loops (as shown) or
one twisted figure-eight loop.
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ary is reached. As each wedge element has five faces, it is
possible for two residue loops to pass through the same
element, intersecting four faces in total [see Fig. 4(b)].
The residues on the intersected faces could then be linked
in two different ways: one way forming two distinct loops,
and the other way forming only one loop in the form of a
twisted figure eight, with the crossover point placed at the
center of the element. However, the discontinuity surfaces
found by a subsequent step of the algorithm would be
identical for both scenarios, so it is not necessary to dis-
tinguish between them.

A residue naturally has sign and in two dimensions, the
sum of all residues on a phase discontinuity network
must be zero, assuming no truncation by the data set
boundary [1]. That is to say, for any 2D slice through a 3D
discontinuity surface the residues must sum to zero. If
residues are only calculated in distinct 2D planes then, as
is the case for a regular 3D grid, all residues in a closed
residue loop will sum to zero. However, if residues are cal-
culated on arbitrary planes, as in the algorithm we
present here for sparse data, the sum of the residues in a
closed residue loop need not be zero.

C. Processing Closed Residue Loops
As discussed in Subsection 2.C, we seek a solution that
fits a single-cycle phase discontinuity surface to each resi-
due loop, which is equivalent to finding the quasi-
L&-norm solution. Any given closed residue loop bounds
an infinite number of surfaces, but minimizing the
L&-norm corresponds to finding the area-minimizing
minimal surface. This is equivalent to the surface that
would be formed by an equilibrium soap film in zero-
gravity. We use an iterative program called surface
evolver [23] to find an approximation to this surface for
each closed residue loop.

D. Processing Truncated Residue Loops
In practice, some residue loops may lie partially outside
our data volume, causing truncation of the residue loops
at the data volume boundary. Loops can pass through the
boundary any even number of times, resulting in any
even number of truncated residue loops (Fig. 5). The as-
sumption that every truncated loop closes on itself [12] is,
therefore, not necessarily correct, and a more complex al-
gorithm is needed to close all the truncated loops. We al-
low for the linking of multiple truncated loops, including
those truncated at different data volume boundaries, and
attempt to minimize the total surface area of the surfaces

formed. Up to now, surface area has had only relative
meaning, as the units are not the same in all dimensions
(two are in space and one is in time). This does not matter
when fitting a minimal surface to a predefined closed loop
in Subsection 3.C, as scaling in any dimension simply
scales the minimal surface but does not alter its position.
With the option of closing loops across differing dimen-
sions, however, the dimension scaling does matter. We
therefore scale the time dimension to be consistent with
the two spatial dimensions. We assume that the probabil-
ity that an edge bounds a residue is related to the length
of the edge. Hence, we expect a relationship between the
length of an edge and the proportion of edges of that
length that bound a residue. We find empirically that in
the two spatial dimensions the data are reasonably well-
fit by the logarithmic model

Nres

Nedge
= k log Ledge + c, "4#

where Ledge is the length of an edge, Nres is the number of
edges of length Ledge bounding a residue, Nedge is the total
number of edges of length Ledge, and k and c are constants
(see Fig. 6). We invert the data from the two spatial di-
mensions to estimate k and c, in a least-squares sense,
and use these values in the time dimension to estimate an
equivalent Ledge between each interferogram.

As noted above, we seek the combination of closed loops
that minimizes the total surface area of the surfaces
formed, which we implement with a Monte Carlo algo-
rithm. Connecting two close ends is more likely to lead to
a minimal surface than two distant ends, as the connec-
tion between the two ends itself forms one of the bound-
aries of the resulting surface. Our approach, then, is to
start with a solution in which all partial loops are self-
closing. The total surface area of this solution becomes
our initial minimum solution. We then select one of the
loop connections, with probability of being chosen being
proportional to its length, and break it. This leads to two
free ends, A and B. For free end A, the next nearest end,
C, is found, currently connected to D. There is a probabil-
ity that we break the connection of C to D and make a
new connection A to C, such that

P =
AB

AB + AC
, "5#

where AB is the distance between A and B and AC is the
distance between A and C (Fig. 7). In other words, if the

Fig. 5. (Color online) Residue loop that is truncated at the data
volume boundaries. The continuous parts of the loop are con-
tained within the data volume, while the dashed parts lie out-
side. The loop is truncated four times, once at the top boundary
and three times at the right boundary.

Fig. 6. (Color online) Relationship between the length of the
arcs connecting data points, Larc, and the fraction of arcs bound-
ing residues, Nres /Narc. These data are from the Lost Hills ex-
ample (Subsection 5.B). The model we fit assumes a logarithmic
relationship.
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change leads to a reduction in length, it is favored. If the
connection is not broken, we find the next-nearest end
and go through the same exercise, repeating until a new
free end is formed. The same procedure is executed for the
other free end, B. This process of breaking and forming
connections proceeds until the two free ends connect to
each other, at which point we have a new solution. If the
total surface area of the new solution is less than the cur-
rent minimum solution, it becomes the new minimum so-
lution. We continue to seek new solutions until a specified
number of consecutive new solutions are found without
finding a new minimum solution. The number is arbitrary
and typically we use 100.

E. Integration of Phase
We next identify the edges that are intersected by discon-
tinuity surfaces and use a flood-fill algorithm to integrate
the phase, with the intersected edges being barriers to
flow. Specifically, we start from an arbitrary data point
and integrate the phase along unintersected edges to the
neighboring data points. Starting from these points we
then integrate the phase again along unintersected edges
to neighboring data points not yet reached. This contin-
ues until no further data points can be reached.

F. Application to InSAR Time Series
As is the case for 2D unwrapping algorithms, the 3D al-
gorithm described above is applicable if the sampling rate
is high enough over most of the data set that aliasing is
avoided. In InSAR time series, however, the phase is un-
dersampled in time for every point in space, due to the
change in atmospheric delay, which can vary by greater
than ! in much less than the time between acquisitions
for all existing SAR data sets. There is also a phase term
due to error in orbital estimation that approximates a
ramp in space. Though often small, this term can also be
greater than ! in magnitude.

We reduce these terms to less than ! over most of the
image by estimating and subtracting the longer wave-
length components of the phase variation between each
interferogram, which include most of the atmospheric and
orbital error signal [24]. For each pair of interferograms
in time, we estimate the highest frequency component of
spatially correlated phase that is possible given our sam-
pling density, i.e., we avoid aliasing. We transform the
complex phase difference between the interferogram pair
to the frequency domain and iteratively low-pass filter,
starting with a broad frequency response and decreasing
the width until the filtered phase contains no residues.
Unwrapping of the filtered phase is therefore unambigu-

ous. To enable use of the fast Fourier transform the com-
plex phase difference is first sampled to a grid, using a
grid spacing over which little variation in phase is ex-
pected (typically 40–100 m). Where multiple pixels fall in
the same grid cell, the complex phase is summed. There
remains a component of the atmospheric phase between
each interferogram, which is an integer number of 2!,
and which we are not able to estimate. However, we are
not interested in the absolute value of the atmospheric
phase, and a constant integer number of 2! offset has no
effect on unwrapping.

We subtract the low-pass filtered phase and unwrap it
separately. Long-wavelength deformation may be in-
cluded in this phase, but this is of no concern as it is only
subtracted temporarily and, after unwrapping, is added
back. We apply the quasi-L&-norm algorithm to the re-
maining phase.

G. Optional Prefiltering
Optionally, if the data are very noisy, a prefiltering step
can be run to filter the data spatially before unwrapping,
as is common in two dimensions [25]. For each time step,
the complex phase data are first sampled to a grid, as
above. The gridded phase is then transformed and filtered
in the frequency domain using an adaptive phase filter
[25]. This preserves the dominant frequencies that are
present in the data. After inverse transformation, the grid
cells containing data are treated as the new data points
for input into the unwrapping algorithm.

4. STEPWISE THREE-DIMENSIONAL
ALGORITHM
As discussed in Subsection 2.C, the quasi-L&-norm solu-
tion is only applicable when there are no multiple-loop
discontinuity surfaces in a data set. In the future we hope
to implement an L0-norm algorithm for these cases. In
the absence, as yet, of an efficient algorithm to find the
L0-norm solution, we describe here an alternate 3D ap-
proach.

The algorithm first unwraps the data in one dimension:
time in the case of InSAR time series. This results in an
initial solution for optimization in the other two dimen-
sions. Although not optimal in a 3D sense, this approach
is applicable when multiple-loop discontinuity surfaces
are present in the data, unlike the quasi-L& approach.
Furthermore, several efficient 2D unwrapping routines
already exist, e.g., minimum-cost flow [3], statistical-cost
network-flow [5], and iterative least squares, which is de-
scribed in this section.

As discussed in Subsection 3.F, when dealing with In-
SAR data, changes in atmospheric delay between passes
can lead to total decorrelation in the time dimension, so it
is not possible to unwrap the phase of individual data
points in time. However, by using instead the phase dif-
ference between nearby pixels, the atmospheric contribu-
tion is largely canceled. Our approach is to use Delaunay
triangulation to define edges connecting data points in
the two spatial dimensions. For each edge, we calculate
the phase difference in each PS interferogram and un-
wrap these phase differences in time. The unwrapping
step consists first of low-pass filtering the complex phase

Fig. 7. (Color online) Optimizing the connection of truncated
residue loops. In (a), the connection between truncated loop ends
A and B is broken. In (b) the connection between end C and D is
broken, and A is reconnected to C. The probability of proceeding
from (a) to (b) is given by P=AB / "AB+AC# where AB is the dis-
tance between A and B, and AC is the distance between A and C.
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difference time series in the frequency domain using a
Gaussian window. The phase difference between each fil-
tered data point is then calculated, wrapped to be be-
tween −! and !, and integrated. The original edge time
series is unwrapped on the basis that the absolute differ-
ence between it and the unwrapped filtered time series
must be less than !.

Any 2D phase unwrapping algorithm for sparse data
can be used to unwrap the data in the spatial domain. We
implement our algorithm using an iterative weighted
leastsquares approach. For each interferogram, the un-
wrapped edge phase differences from the first step are in-
verted to give the phase at each pixel using weighted
least-squares. For weighting we use the inverse of the
standard deviation of the difference between the edge
time series and the filtered edge time series. We then cal-
culate residuals between the edge phase differences from
the first step and edge phase differences predicted by the
model, and drop the edges with the largest residuals. The
process is repeated until all residuals are zero. The opti-
mal solution using this approach would be achieved by
dropping only one edge per iteration. Computationally
this is expensive, however, so typically we initially drop a
maximum of 0.1% of the edges per iteration. If dropping
multiple edges will lead to the inversion becoming rank
deficient we reduce the maximum number to be dropped
by a factor of 10. We repeat this reduction until full rank
is achieved, which is always the case once the maximum
number becomes one. As in the case of the quasi-L& 3D
algorithm, if the data are very noisy, an optional prefilter-
ing step can be run to filter the data spatially before un-
wrapping (Subsection 3.G).

5. EXPERIMENTAL RESULTS
A. Simulated Data Example
We first assess our phase unwrapping algorithms by ex-
amining a set of interferograms we formed for a simu-
lated center of dilation within a homogeneous elastic half-
space [26] at 2 km depth, with volume changing at a rate
defined by a random walk (see Fig. 8). We selected 4000
points randomly within a 20 km'20 km area above the
point source. The surface deformation was calculated at
these points for 20 randomly spaced satellite passes, as-
suming a satellite repeat period of 35 days, and converted
into line-of-sight phase difference with respect to the
tenth pass. We added a random atmospheric phase signal
for each scene with the spectral power following a −5/3
power law for wavelengths larger than 2 km and −8/3 for
wavelengths less than 2 km [24]. The maximum variation
of the atmospheric signal simulated for each interfero-

gram has a mean of 2.9 rad. We also added white noise,
with a standard deviation of 50°, to every scene. Finally
we differenced every scene with respect to the tenth scene
as our “master” scene, and wrapped the data (Fig. 9).

The results of unwrapping using the quasi-L&-norm 3D
algorithm and the stepwise 3D algorithm are shown in
Fig. 10. Also shown for comparison are the results of un-
wrapping each interferogram separately using a 2D itera-
tive least-squares algorithm. No prefiltering of the phase
in the spatial domain was applied prior to any of the al-
gorithms. The problem becomes progressively under-
sampled as the deformation gradient increases so that
even the quasi-L&-norm 3D algorithm is unable to un-
wrap accurately the peak deformation signal in every in-
terferogram. The quasi-L&-norm 3D algorithm unwraps
the peak deformation signal more accurately than the
stepwise 3D algorithm, however, which in turn does bet-
ter than the 2D algorithm. Figure 11 shows the residuals
between the unwrapped values and the true values.
While the spatial pattern of deformation is better re-
trieved by the quasi-L&-norm algorithm than the stepwise
algorithm, there are more local, single-cycle errors. This

Fig. 8. (Color online) Simulated change in volume of a center of
dilation that is used to calculate the deformation phase contribu-
tion to the simulated phase data in Fig. 9.

Fig. 9. (Color online) Simulated phase data in radians, (a) un-
wrapped and (b) wrapped, including deformation phase, atmo-
spheric phase delay, and noise. The unwrapped phase is refer-
enced to the top-right corner to enable comparison with Fig. 10.
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is also apparent in Fig. 12, a comparison of unwrapping
accuracy for the different algorithms. The quasi-L&-norm
algorithm performs better than the stepwise algorithm in
terms of multiple-cycle errors, but worse in terms of
single-cycle errors. However, when recovering the defor-
mation field we are more concerned with avoiding the sys-
tematic errors around the peak deformation than these
randomly distributed errors. For our purposes, therefore,
the quasi-L&-norm algorithm gives the best results.

B. Lost Hills InSAR Persistent Scatterer Example
We now present 3D phase unwrapping of two real data
sets. The first data set consists of 28 interferograms for
the Lost Hills oil field in California. This is an actively
subsiding area due to oil extraction. The interferograms
were formed from 29 fine mode (F1 beam) scenes acquired
by the RADARSAT-1 satellite every 24 days between Feb-
ruary 20, 2002 and February 10, 2004. All interferograms

Fig. 10. (Color online) Simulated phase data in radians un-
wrapped using (a) the quasi-L& 3D algorithm, (b) the stepwise 3D
algorithm, and (c) an iterative least-squares 2D algorithm. In all
cases the phase is referenced to the top-right corner.

Fig. 11. (Color online) Difference in cycles between the simu-
lated unwrapped phase and that estimated by the three algo-
rithms, (a) the quasi-L& 3D algorithm, (b) the stepwise 3D algo-
rithm, and (c) an iterative least-squares 2D algorithm.
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were formed with respect to the same master scene ac-
quired on March 11, 2003. We used the method of Hooper
et al. [8] to identify PS pixels and estimate and remove
the look angle error terms, including those due to errors
in the digital elevation model. We prefiltered the data as
described in Subsection 3.G and unwrapped the phase us-
ing both the quasi-L&-norm and stepwise 3D algorithms.
The results are shown in Fig. 13. Despite the difference in
approach, the results are identical for 99% of the un-
wrapped phase values, and no systematic differences are
evident, implying that both algorithms are feasible in this
case.

C. Long Valley InSAR Persistent Scatterer Example
We also applied the two algorithms to data acquired over
Long Valley caldera in California. We processed 21 inter-
ferograms formed from 22 scenes acquired by the ERS-1
and ERS-2 satellites between June 4 1992 and August 20,
2000. All interferograms were formed with respect to the
same master scene acquired on June 22, 1997. Within the
caldera is a resurgent dome that, has both inflated and
deflated during this period [7]. We used the method of
Hooper et al. [8] to identify PS pixels and estimate and re-
move the look-angle error terms. Before unwrapping we
prefiltered the data (Subsection 3.G).

The quasi-L& 3D algorithm does not work well in this
region, producing discontinuities in the unwrapped phase
where none are expected. We expect this algorithm to be
accurate only when the sampling is such that no multiple-
loop discontinuities are present. Presumably, for these
data, this is not the case.

Using the stepwise 3D unwrapping algorithm, how-
ever, the results are reasonable (Fig. 14). We validated
the results against ground truth by comparison of relative
vertical motion calculated from the unwrapped phase, to
that measured by leveling and global positioning system
(GPS) surveys, and inferred from electronic distance
meter (EDM) measurements. The results are shown in
Fig. 15. Horizontal motion measured by the EDM line is
almost parallel to the satellite track and hence not
present in our interferograms. However, this horizontal
motion is almost proportional to the vertical motion of the
resurgent dome [27] and, once scaled using less frequent
leveling and GPS measurements, provides a proxy for
relative vertical motion. We estimated the phase at each
benchmark as the mean phase of all PS pixels within
500 m and the error bars show the standard deviation of
these phases. In (a) we converted the phase values to rela-
tive vertical displacement by assuming that all the mo-
tion contributing to the change in phase was due to verti-
cal motion only. In (b) we relaxed that assumption and

solved for a component of horizontal displacement propor-
tional to the vertical component. We found the constant of
proportionality through a least-squares inversion that

Fig. 12. (Color online) Comparison of unwrapping accuracy for
the simulated data for the three different algorithms.

Fig. 13. Lost Hills region persistent scatterer interferograms in
radians, (a) wrapped phase, (b) phase unwrapped using the
quasi-L&-norm 3D algorithm, and (c) phase unwrapped using the
stepwise 3D algorithm. The date of the master acquisition is Feb-
ruary 22, 2003 and only every ninth interferogram is shown. The
background image in gray is the mean SAR amplitude of all 28
passes and the points represent PS pixels, with color indicating
the relative phase difference with respect to the northeast corner.
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minimized the difference between the vertical displace-
ment and the scaled EDM measurements. Our results in-
dicate that the unwrapping between the two benchmarks
is reliable. Hooper et al. [7] unwrapped PS time series
over Long Valley using a 2D algorithm and also found the
unwrapping between the two benchmarks to be reason-
able. However, the overall pattern of the displacements
found by Hooper et al. [7] differs to that observed by Fi-
alko et al. [28], especially on the west side of the caldera
where there appears to be a discontinuity in the former
data set. The overall pattern we find using the stepwise
3D algorithm, on the other hand, matches well.

6. CONCLUSIONS
We framed the problem of 3D unwrapping in terms of an
optimization problem, and developed an algorithm to find
an approximate L&-norm solution. For a subset of cases,
those with no multiple-cycle phase discontinuities and no
2D closed-loop discontinuities, the L&-norm solution is
identical to the L0-norm solution that we expect to be the
best solution within this optimization framework. We

demonstrated the accuracy of the algorithm on simulated
and real data sets. We also developed a stepwise 3D algo-
rithm that relies on first unwrapping in 1D, then itera-
tively improving this solution in the other two dimen-
sions. This algorithm may be applied in the general case,
although we would not expect it to be as accurate as the
L&-norm algorithm in the subset of cases mentioned
above. We demonstrated the accuracy of this algorithm on
both simulated and real data sets.

The next step is to develop an efficient algorithm to find
the L0 solution to the general case, allowing application of
the fully 3D approach in all cases. A further improvement
still would be to formulate the optimization in terms of
generalized, nonlinear cost functions, as done in two di-
mensions by Chen and Zebker [18].
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