ERTH 455 / GEOP 555
 Geodetic Methods

- Lecture 06: GPS Carrier Phase -

Ronni Grapenthin rg@nmt.edu MSEC 356 $\times 5924$

September 11, 2017

Measurement Models

- Code Phase Measurement (last week)
- Carrier Phase Measurement (today!)

Misra and Enge, 2011, GPS-Signals, Measurements, and Performance

Carrier Phase Measurement

- also: carrier beat phase measurement
- difference between phases of receiver generated carrier signal and carrier received from satellite
- is indirect and ambiguous measurement of signal transit time
- phase at time t :

$$
\phi(t)=\phi_{u}(t)-\phi^{s}(t-\tau)+N
$$

- - $\phi_{u}(t)$ phase of rcx generated signal
- $\phi^{S}(t-\tau)$ phase of satellite signal received at t (sent at $t-\tau$)
- τ : still transit time
- N : integer ambiguity, must be estimated: integer ambiguity resolution

Phase (Integer) Ambiguity

Cycle Slip

- receiver has to track phase continuously
- loss of lock (tree, etc): cycle slip - integer number of cycles jump in phase data
- must be fixed during analysis (software, several strategies; sometimes manually)

courtesy: Jeff Freymueller

Carrier Phase Measurement

$$
\phi=\frac{1}{\lambda} *(r+I+T)+f *\left(\delta t_{u}-\delta t^{s}\right)+N+\epsilon_{\phi}
$$

(units of cycles) where

- λ, f - carrier wavelength, frequency
- r - geometric range
- I, T - ionospheric, tropospheric propagation errors (path delays)
- $\delta t_{u}, \delta t^{s}$ - receiver, satellite clock biases
- N - phase ambiguity
- ϵ_{ϕ} - error term (phase)

Carrier Phase Measurement

$$
\phi=\frac{1}{\lambda} *(r+I+T)+f *\left(\delta t_{u}-\delta t^{S}\right)+N+\epsilon_{\phi}
$$

(units of cycles) where

- λ, f - carrier wavelength, frequency
- r - geometric range
- I, T - ionospheric, tropospheric propagation errors (path delays)
- $\delta t_{u}, \delta t^{s}$ - receiver, satellite clock biases
- N - phase ambiguity
- ϵ_{ϕ} - error term (phase)
compare to code measurement eqn (units of distance):

$$
\rho=r+I+T+c *\left(\delta t_{u}-\delta t^{s}\right)+\epsilon_{\rho}
$$

Code tracking is unambiguous (because codes are long!)
$\sigma\left(\epsilon_{\rho}\right) \approx 0.5 \mathrm{~m}$
$\sigma\left(\epsilon_{\phi}\right) \approx 0.025$ cycle (5 mm)

Phase Ambiguity

Elimination of "Nuisance" Parameters

- difference multiple satellite and receiver data to eliminate clock biases
- "single difference" between 2 receivers and 1 satellite: eliminates satellite clock
- "single difference" between 1 receiver and 2 satellites: eliminates receiver clock
- "double difference" between those differences removes both clocks
- BUT: you estimate baseline vector between receivers rather than their positions!
- no linearly dependent observations, careful choosing (by software)
- some estimate clock errors intead

Single + Double Difference

http://www.fig.net/resources/publications/figpub/pub49/figpub49.asp

Single Difference

Carrier phase measurement from satellite k at receiver u :

$$
\phi_{u}^{(k)}=\frac{1}{\lambda} *\left(r_{u}^{(k)}+l_{u}^{(k)}+T_{u}^{(k)}\right)+f *\left(\delta t_{u}-\delta \mathbf{t}^{(\mathbf{k})}\right)+N_{u}^{(k)}+\epsilon_{\phi, u}^{(k)}
$$

Single Difference

Carrier phase measurement from satellite k at receiver u :

$$
\phi_{u}^{(k)}=\frac{1}{\lambda} *\left(r_{u}^{(k)}+I_{u}^{(k)}+T_{u}^{(k)}\right)+f *\left(\delta t_{u}-\delta \mathbf{t}^{(\mathbf{k})}\right)+N_{u}^{(k)}+\epsilon_{\phi, u}^{(k)}
$$

Carrier phase measurement from satellite k at receiver r :

$$
\phi_{r}^{(k)}=\frac{1}{\lambda} *\left(r_{r}^{(k)}+I_{r}^{(k)}+T_{r}^{(k)}\right)+f *\left(\delta t_{r}-\delta \mathbf{t}^{(\mathbf{k})}\right)+N_{r}^{(k)}+\epsilon_{\phi, r}^{(k)}
$$

Single Difference

Carrier phase measurement from satellite k at receiver u :

$$
\phi_{u}^{(k)}=\frac{1}{\lambda} *\left(r_{u}^{(k)}+l_{u}^{(k)}+T_{u}^{(k)}\right)+f *\left(\delta t_{u}-\delta \mathbf{t}^{(\mathbf{k})}\right)+N_{u}^{(k)}+\epsilon_{\phi, u}^{(k)}
$$

Carrier phase measurement from satellite k at receiver r :

$$
\phi_{r}^{(k)}=\frac{1}{\lambda} *\left(r_{r}^{(k)}+I_{r}^{(k)}+T_{r}^{(k)}\right)+f *\left(\delta t_{r}-\delta \mathbf{t}^{(\mathbf{k})}\right)+N_{r}^{(k)}+\epsilon_{\phi, r}^{(k)}
$$

receiver single difference:

$$
\begin{aligned}
\phi_{u r}^{(k)} & =\phi_{u}^{(k)}-\phi_{r}^{(k)} \\
& =\frac{1}{\lambda} *\left(r_{u r}^{(k)}+I_{u r}^{(k)}+T_{u r}^{(k)}\right)+f * \delta t_{u r}+N_{u r}^{(k)}+\epsilon_{\phi, u r}^{(k)}
\end{aligned}
$$

Single Difference

Carrier phase measurement from satellite k at receiver u :

$$
\phi_{u}^{(k)}=\frac{1}{\lambda} *\left(r_{u}^{(k)}+l_{u}^{(k)}+T_{u}^{(k)}\right)+f *\left(\delta t_{u}-\delta \mathbf{t}^{(\mathbf{k})}\right)+N_{u}^{(k)}+\epsilon_{\phi, u}^{(k)}
$$

Carrier phase measurement from satellite k at receiver r :

$$
\phi_{r}^{(k)}=\frac{1}{\lambda} *\left(r_{r}^{(k)}+I_{r}^{(k)}+T_{r}^{(k)}\right)+f *\left(\delta t_{r}-\delta \mathbf{t}^{(\mathbf{k})}\right)+N_{r}^{(k)}+\epsilon_{\phi, r}^{(k)}
$$

receiver single difference:

$$
\begin{aligned}
\phi_{u r}^{(k)} & =\phi_{u}^{(k)}-\phi_{r}^{(k)} \\
& =\frac{1}{\lambda} *\left(r_{u r}^{(k)}+I_{u r}^{(k)}+T_{u r}^{(k)}\right)+f * \delta t_{u r}+N_{u r}^{(k)}+\epsilon_{\phi, u r}^{(k)}
\end{aligned}
$$

"short" baseline (ionosphere, troposphere errors small)

$$
\phi_{u r}^{(k)}=\frac{r_{u r}^{(k)}}{\lambda}+f * \delta t_{u r}+N_{u r}^{(k)}+\epsilon_{\phi, u r}^{(k)}
$$

Single Difference

want to estimate $\mathbf{x}_{\mathbf{u r}}=\mathbf{x}_{\mathbf{u}}-\mathbf{x}_{\mathbf{r}}$ hidden in range difference (short baselines):

$$
r_{u r}^{(k)}=r_{u}^{(k)}-r_{r}^{(k)}=-\mathbf{1}_{\mathbf{r}}^{(\mathbf{k})} \mathbf{x}_{\mathbf{u r}}
$$

$\mathbf{1}_{\mathbf{r}}^{(\mathbf{k})}$ is unit vector pointing from receiver r to satellite k (different treatment for longer baselines)

Misra and Enge, 2011, GPS-Signals, Measurements, and
Performance

Single Difference

Single differences for all K satellites in view:
$\phi_{u r}=\frac{1}{\lambda}\left[\begin{array}{c}\left(-\mathbf{1}_{\mathbf{r}}^{(1)}\right)^{T} \\ \left(-\mathbf{1}_{\mathbf{r}}^{(2)}\right)^{T} \\ \vdots \\ \left(-\mathbf{1}_{\mathbf{r}}^{(\mathbf{K})}\right)^{T}\end{array}\right] \mathbf{x}_{\mathbf{u r}}+f * \delta t_{u r}\left[\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right]+\left[\begin{array}{c}N_{u r}^{(1)} \\ N_{u r}^{(2)} \\ \vdots \\ N_{u r}^{(K)}\end{array}\right]+\epsilon_{\phi, u r}$

Single Difference

Single differences for all K satellites in view:
$\phi_{u r}=\frac{1}{\lambda}\left[\begin{array}{c}\left(-\mathbf{1}_{\mathbf{r}}^{(\mathbf{1})}\right)^{T} \\ \left(-\mathbf{1}_{\mathbf{r}}^{(\mathbf{2})}\right)^{T} \\ \vdots \\ \left(-\mathbf{1}_{\mathbf{r}}^{(\mathbf{K})}\right)^{T}\end{array}\right] \mathbf{x}_{\mathbf{u r}}+f * \delta t_{u r}\left[\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right]+\left[\begin{array}{c}N_{u r}^{(1)} \\ N_{u r}^{(2)} \\ \vdots \\ N_{u r}^{(K)}\end{array}\right]+\epsilon_{\phi, u r}$
Can be rearranged to:

$$
\lambda \phi_{u r}=\left[\begin{array}{cc}
\left(-\mathbf{1}_{\mathbf{r}}^{(1)}\right)^{T} & 1 \\
\left(-\mathbf{1}_{\mathbf{r}}^{(2)}\right)^{T} & 1 \\
\vdots & \vdots \\
\left(-\mathbf{1}_{\mathbf{r}}^{(\mathbf{K})}\right)^{T} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{\mathbf{u r}} \\
b_{u r}+\lambda N_{u r}^{(1)}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\lambda\left(N_{u r}^{(2)}-N_{u r}^{(1)}\right) \\
\vdots \\
\lambda\left(N_{u r}^{(K)}-N_{u r}^{(1)}\right)
\end{array}\right]+\epsilon_{\phi, u r}
$$

where $b_{u r}=c \delta t_{u r}$ is receiver clock bias

Double Difference

Form single differences for receivers u, r and satellite I

$$
\begin{aligned}
\phi_{u r}^{(I)} & =\phi_{u}^{(I)}-\phi_{r}^{(I)} \\
& =\frac{r_{u r}^{(I)}}{\lambda}+\mathbf{f} * \delta \mathbf{t}_{\mathbf{u r}}+N_{u r}^{(I)}+\epsilon_{\phi, u r}^{(I)}
\end{aligned}
$$

Double Difference

Form single differences for receivers u, r and satellite I

$$
\begin{aligned}
\phi_{u r}^{(I)} & =\phi_{u}^{(I)}-\phi_{r}^{(I)} \\
& =\frac{r_{u r}^{(I)}}{\lambda}+\mathbf{f} * \delta \mathbf{t u r}_{\mathbf{u r}}+N_{u r}^{(I)}+\epsilon_{\phi, u r}^{(I)}
\end{aligned}
$$

Form double difference:

$$
\begin{aligned}
\phi_{u r}^{(k l)} & =\phi_{u r}^{(k)}-\phi_{u r}^{(l)} \\
& =\left(\phi_{u}^{(k)}-\phi_{r}^{(k)}\right)-\left(\phi_{u}^{(l)}-\phi_{r}^{(l)}\right) \\
& =\frac{r_{u r}^{(k l)}}{\lambda}+N_{u r}^{(k l)}+\epsilon_{\phi, u r}^{(k l)}
\end{aligned}
$$

Double Difference

relate range double difference term to relative position vector $\mathbf{x}_{\mathbf{u r}}$:

$$
\begin{aligned}
r_{u r}^{(k l)} & =\left(r_{u}^{(k)}-r_{r}^{(k)}\right)-\left(r_{u}^{(l)}-r_{r}^{(I)}\right) \\
& =-\left(\mathbf{1}_{\mathbf{r}}^{(\mathbf{k})}-\mathbf{1}_{\mathbf{r}}^{(\mathrm{I})}\right) \mathbf{x}_{\mathbf{u r}}
\end{aligned}
$$

Double Difference

relate range double difference term to relative position vector $\mathbf{x}_{\mathbf{u r}}$:

$$
\begin{aligned}
r_{u r}^{(k l)} & =\left(r_{u}^{(k)}-r_{r}^{(k)}\right)-\left(r_{u}^{(I)}-r_{r}^{(I)}\right) \\
& =-\left(\mathbf{1}_{\mathbf{r}}^{(\mathbf{k})}-\mathbf{1}_{\mathbf{r}}^{(\mathrm{I})}\right) \mathbf{x}_{\mathbf{u r}}
\end{aligned}
$$

(K-1) double differences (here, satellite 1 is reference):
$\left[\begin{array}{c}\phi_{u r}^{(21)} \\ \phi_{u r}^{(31)} \\ \vdots \\ \phi_{u r}^{(K 1)}\end{array}\right]=\lambda^{-1}\left[\begin{array}{c}-\left(\mathbf{1}_{\mathbf{r}}^{(\mathbf{1})}-\mathbf{1}_{\mathbf{r}}^{(\mathbf{1})}\right)^{T} \\ -\left(\mathbf{1}_{\mathbf{r}}^{(2)}-\mathbf{1}_{\mathbf{r}}^{(1)}\right)^{T} \\ \vdots \\ -\left(\mathbf{1}_{\mathbf{r}}^{(\mathbf{K})}-\mathbf{1}_{\mathbf{r}}^{(\mathbf{1})}\right)^{T}\end{array}\right] \mathbf{x}_{\mathbf{u r}}+\left[\begin{array}{c}N_{u r}^{(21)} \\ N_{u r}^{(31)} \\ \vdots \\ N_{u r}^{(K 1)}\end{array}\right]+\left[\begin{array}{c}\epsilon_{\phi, u r}^{(21)} \\ \epsilon_{\phi, u r}^{(31)} \\ \vdots \\ \epsilon_{\phi, u r}^{(K 1)}\end{array}\right]$

Triple Difference

Triple Difference

- adds difference in time
- difference double difference from epoch t_{1} and t_{0}
- can be used to eliminate phase ambiguity
- but removes most of geometric strength and hence gives weak positions

Receiver Velocities

- subtracting two subsequent phase observations from one another gives Doppler shift
- correct for satellite motion (known from orbit file), left with receiver motion
- solve for x, y, z, velocity and receiver clock bias
- works really well for high-rate ($\geq 1 \mathrm{~Hz}$) data

Receiver Velocities

Grapenthin et al., in prep.

Receiver Velocities

NAST (L2,igs) pg_{h} (33s) $=92.6 \mathrm{~cm} / \mathrm{s}$

displacements

Grapenthin et al., in prep.

Receiver Velocities - Cycle Slip Detector?

