ERTH 455 / GEOP 555 Geodetic Methods

- Lecture 18: Modeling - Parameter Estimation -

> Ronni Grapenthin rg@nmt.edu MSEC 356 x5924

October 23, 2017

"Guess the Process"

This more of a "different angles on the same process:" http://topex.ucsd.edu/Ecuador/

Parameter Estimation

- We have measurements and an idea about the process - how do we get best estimate for parameters? E.g.,

$$
d=a+b * x
$$

where

- d are the measurements (column vector)
- x are the "coordinates" of the measurements (column vector)
- a, b describe the process (scalars)
- What is a best estimate?
- Yes, inference of parameters from measurements is an estimation! WHY?
... on board ...

Parameter Estimation

Let's look at an example (least_squares.py)...

Least Squares Solution

- least squares is general approach to solve linear systems of equations
- linear systems obey superposition and scaling
- assume m_{i} are model parameters, which of these are linear?

$$
\begin{aligned}
d & =m_{1}+m_{2} x-(1 / 2) m_{3} x^{2} \\
d & =\left(m_{1}-m_{2} x\right)^{1 / 2}-m_{3}^{2} x
\end{aligned}
$$

- General form: $\mathbf{d}=\mathbf{G m}+\epsilon$

Least Squares Solution

- least squares is general approach to solve linear systems of equations
- linear systems obey superposition and scaling
- assume m_{i} are model parameters, which of these are linear?

$$
\begin{aligned}
d & =m_{1}+m_{2} x-(1 / 2) m_{3} x^{2} \\
d & =\left(m_{1}-m_{2} x\right)^{1 / 2}-m_{3}^{2} x
\end{aligned}
$$

- General form: $\mathbf{d}=\mathbf{G m}+\epsilon$
- d is data vector
- G design/model/system matrix || Green's functions
- m model parameters that "tweak" G
- ϵ residuals / measurement errors

Least Squares Solution

- least squares is general approach to solve linear systems of equations
- linear systems obey superposition and scaling
- assume m_{i} are model parameters, which of these are linear?

$$
\begin{aligned}
d & =m_{1}+m_{2} x-(1 / 2) m_{3} x^{2} \\
d & =\left(m_{1}-m_{2} x\right)^{1 / 2}-m_{3}^{2} x
\end{aligned}
$$

- General form: $\mathbf{d}=\mathbf{G m}+\epsilon$
- d is data vector
- G design/model/system matrix || Green's functions
- m model parameters that "tweak" G
- ϵ residuals / measurement errors
- Solve for \mathbf{m} !

Least Squares Solution

- General form: $\mathbf{d}=\mathbf{G m}+\epsilon$
- Least squares solution: $\mathbf{m}_{\text {est }}=\left(\mathbf{G}^{\boldsymbol{T}} \mathbf{G}\right)^{-\mathbf{1}} \mathbf{G}^{\boldsymbol{T}} \mathbf{d}$

How to get there?

Most problems result in same least squares solution

Least Squares Solution

- General form: $\mathbf{d}=\mathbf{G m}+\epsilon$
- Least squares solution: $\mathbf{m}_{\text {est }}=\left(\mathbf{G}^{\boldsymbol{T}} \mathbf{G}\right)^{-\mathbf{1}} \mathbf{G}^{\boldsymbol{T}} \mathbf{d}$

How to get there?

- Variational approach:
- Probabilistic approach:
- Geometric approach:

Most problems result in same least squares solution

Least Squares Solution

- General form: $\mathbf{d}=\mathbf{G m}+\epsilon$
- Least squares solution: $\mathbf{m}_{\text {est }}=\left(\mathbf{G}^{\boldsymbol{T}} \mathbf{G}\right)^{-\mathbf{1}} \mathbf{G}^{\boldsymbol{T}} \mathbf{d}$

How to get there?

- Variational approach:
- assume optimal solution minimizes length, j of the residual vector r :

$$
j=r^{T} r
$$

- Probabilistic approach:
- Geometric approach:

Most problems result in same least squares solution

Least Squares Solution

- General form: $\mathbf{d}=\mathbf{G m}+\epsilon$
- Least squares solution: $\mathbf{m}_{\text {est }}=\left(\mathbf{G}^{\boldsymbol{T}} \mathbf{G}\right)^{-\mathbf{1}} \mathbf{G}^{\mathbf{T}} \mathbf{d}$

How to get there?

- Variational approach:
- assume optimal solution minimizes length, j of the residual vector r :

$$
j=r^{T} r
$$

- Probabilistic approach:
- assume optimal solution is most probable one (maximum likelihood), derived from probability density function of observing measurements
- Geometric approach:

Most problems result in same least squares solution

Least Squares Solution

- General form: $\mathbf{d}=\mathbf{G m}+\epsilon$
- Least squares solution: $\mathbf{m}_{\text {est }}=\left(\mathbf{G}^{\boldsymbol{T}} \mathbf{G}\right)^{-\mathbf{1}} \mathbf{G}^{\mathbf{T}} \mathbf{d}$

How to get there?

- Variational approach:
- assume optimal solution minimizes length, j of the residual vector r : $j=r^{T} r$
- Probabilistic approach:
- assume optimal solution is most probable one (maximum likelihood), derived from probability density function of observing measurements
- Geometric approach:
- solution is a projection from data space into model space, what is projection of vector b in direction of vector a
Most problems result in same least squares solution

Variational Approach

- choose solution where residual vector \mathbf{r} has minimum length
- most common is standard geometric / Euclidean length / L_{2} norm:

$$
L_{2}=\left(r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{4}^{2} \ldots\right)^{-1 / 2}=\sqrt{\sum_{i=1}^{N} r_{i}^{2}}
$$

- L_{1} - norm less sensitive to bias from single bad points:

$$
L_{1}=\left(\left|r_{1}\right|+\left|r_{2}\right|+\left|r_{3}\right|+\left|r_{4}\right| \ldots\right)^{-1 / 2}=\sum_{i=1}^{N}\left|r_{i}\right|
$$

Variational Approach

- choose solution where residual vector \mathbf{r} has minimum length
- most common is standard geometric / Euclidean length / L_{2} norm:

$$
L_{2}=\left(r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{4}^{2} \ldots\right)^{-1 / 2}=\sqrt{\sum_{i=1}^{N} r_{i}^{2}}
$$

- L_{1} - norm less sensitive to bias from single bad points:

$$
L_{1}=\left(\left|r_{1}\right|+\left|r_{2}\right|+\left|r_{3}\right|+\left|r_{4}\right| \ldots\right)^{-1 / 2}=\sum_{i=1}^{N}\left|r_{i}\right|
$$

Solutions:

- Least squares solution: $\mathbf{m}_{\text {est }}=\left(\mathbf{G}^{\top} \mathbf{G}\right)^{-\mathbf{1}} \mathbf{G}^{\mathbf{T}} \mathbf{d}$

Variational Approach

- choose solution where residual vector \mathbf{r} has minimum length
- most common is standard geometric / Euclidean length / L_{2} norm:

$$
L_{2}=\left(r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{4}^{2} \ldots\right)^{-1 / 2}=\sqrt{\sum_{i=1}^{N} r_{i}^{2}}
$$

- L_{1} - norm less sensitive to bias from single bad points:

$$
L_{1}=\left(\left|r_{1}\right|+\left|r_{2}\right|+\left|r_{3}\right|+\left|r_{4}\right| \ldots\right)^{-1 / 2}=\sum_{i=1}^{N}\left|r_{i}\right|
$$

Solutions:

- Least squares solution: $\mathbf{m}_{\text {est }}=\left(\mathbf{G}^{\top} \mathbf{G}\right)^{-1} \mathbf{G}^{\top} \mathbf{d}$
- L_{1} solution: $\mathbf{G}^{\top} \mathbf{R G} \mathbf{m}_{\text {est }}=\mathbf{G}^{\top} \mathbf{R d}$
- R : diagonal weighting matrix : $R_{i, i}=1 /\left|r_{i}\right|$
- nonlinear, need iterative alorithm (IRLS) to solve
- IRLS starts with $m_{\text {est }}^{0}=m_{\text {est }, L_{2}}$ solution, construct R^{0} using residuals
- iterate until some threshold reached

Variational Approach

- $\mathbf{d}=\mathbf{G m}+\epsilon$
- calculate $\mathbf{m}_{\text {est }}=\left(\mathbf{G}^{\top} \mathbf{G}\right)^{-\mathbf{1}} \mathbf{G}^{\top} \mathbf{d}$
- get residuals $\mathbf{r}_{\text {est }}=\mathbf{d}-\mathbf{G} m_{\text {est }}$
- define $j(\mathbf{m})=\mathbf{r}^{\mathbf{T}} \mathbf{r}=(\mathbf{d}-\mathbf{G m})^{\boldsymbol{T}}(\mathbf{d}-\mathbf{G m})$
- find minimum $j: \delta j\left(\mathbf{m}_{\text {est }}\right)=0$

Confidence Intervals

- if independent and normally distributed data errors:
- $\operatorname{COV}\left(m_{L_{2}}\right)=\sigma^{2}\left(G^{T} G\right)^{-1}$
- get 95% confidence intervals:
- each model parameter m_{i} has normal distribution
- mean given by corresponding $m_{i, \text { true }}$

Confidence Intervals

- if independent and normally distributed data errors:
- $\operatorname{COV}\left(m_{L_{2}}\right)=\sigma^{2}\left(G^{T} G\right)^{-1}$
- get 95% confidence intervals:
- each model parameter m_{i} has normal distribution
- mean given by corresponding $m_{i, \text { true }}$
- variance $\operatorname{COV}\left(m_{L_{2}}\right)_{i, i}$

$$
m_{L_{2}} \pm 1.96\left(\operatorname{diag}\left(\operatorname{COV}\left(m_{L_{2}}\right)\right)\right)^{1 / 2}
$$

Confidence Intervals

- if independent and normally distributed data errors:
- $\operatorname{COV}\left(m_{L_{2}}\right)=\sigma^{2}\left(G^{T} G\right)^{-1}$
- get 95% confidence intervals:
- each model parameter m_{i} has normal distribution
- mean given by corresponding $m_{i, \text { true }}$
- variance $\operatorname{COV}\left(m_{L_{2}}\right)_{i, i}$

$$
m_{L_{2}} \pm 1.96\left(\operatorname{diag}\left(\operatorname{COV}\left(m_{L_{2}}\right)\right)\right)^{1 / 2}
$$

- 1.96 comes from:

$$
\frac{1}{\sigma \sqrt{2 \pi}} \int_{-1.96 \sigma}^{1.96 \sigma} e^{-\frac{x^{2}}{2 \sigma^{2}}} d x \approx 0.95
$$

Parameter Estimation // Inverse Problems are hard . . .

Parameter Estimation // Inverse Problems are hard . . .

- model existence
- model uniqueness
- instability

Parameter Estimation // Inverse Problems are hard . . .

- model existence
- There may be no model that fits data (exactly)
- physics are approximate (or wrong)
- data contain noise
- model uniqueness
- instability

Parameter Estimation // Inverse Problems are hard . . .

- model existence
- There may be no model that fits data (exactly)
- physics are approximate (or wrong)
- data contain noise
- model uniqueness
- There may be other models than $m_{t r u e}$ that satisfy data
- e.g., non-trivial null space $\mathbf{G m}_{0}=\mathbf{0}$
- smoothing or other biases may affect solution
- model resolution analysis is critical!
- instability

Parameter Estimation // Inverse Problems are hard . . .

- model existence
- There may be no model that fits data (exactly)
- physics are approximate (or wrong)
- data contain noise
- model uniqueness
- There may be other models than $m_{t r u e}$ that satisfy data
- e.g., non-trivial null space $\mathbf{G m}_{0}=\mathbf{0}$
- smoothing or other biases may affect solution
- model resolution analysis is critical!
- instability
- small change in measurement results in enormous change in parameter estimates
- possibly stabilize such problems regularization (smoothing)

