

"Guess the Process"

This more of a "different angles on the same process:"

http://topex.ucsd.edu/Ecuador/

Parameter Estimation

 We have measurements and an idea about the process - how do we get best estimate for parameters? E.g.,

$$d = a + b * x$$

where

- *d* are the measurements (column vector)
- x are the "coordinates" of the measurements (column vector)
- a, b describe the process (scalars)
- What is a best estimate?
- Yes, inference of parameters from measurements is an estimation! WHY?

Matrix Notation

...on board ...

Parameter Estimation

Let's look at an example (least_squares.py) ...

- least squares is general approach to solve linear systems of equations
- linear systems obey superposition and scaling
- assume m_i are model parameters, which of these are linear?

$$d = m_1 + m_2 x - (1/2) m_3 x^2$$

$$d = (m_1 - m_2 x)^{1/2} - m_3^2 x$$

• General form: $\mathbf{d} = \mathbf{Gm} + \epsilon$

- least squares is general approach to solve linear systems of equations
- linear systems obey superposition and scaling
- assume m_i are model parameters, which of these are linear?

$$d = m_1 + m_2 x - (1/2) m_3 x^2$$

$$d = (m_1 - m_2 x)^{1/2} - m_3^2 x$$

- General form: $\mathbf{d} = \mathbf{Gm} + \epsilon$
 - d is data vector
 - G design/model/system matrix || Green's functions
 - m model parameters that "tweak" G
 - ϵ residuals / measurement errors

- least squares is general approach to solve linear systems of equations
- linear systems obey superposition and scaling
- assume m_i are model parameters, which of these are linear?

$$d = m_1 + m_2 x - (1/2) m_3 x^2$$

$$d = (m_1 - m_2 x)^{1/2} - m_3^2 x$$

- General form: $\mathbf{d} = \mathbf{Gm} + \epsilon$
 - d is data vector
 - G design/model/system matrix || Green's functions
 - m model parameters that "tweak" G
 - ϵ residuals / measurement errors
- Solve for m!

- General form: $\mathbf{d} = \mathbf{Gm} + \epsilon$
- Least squares solution: $\mathbf{m}_{est} = (\mathbf{G}^T\mathbf{G})^{-1}\mathbf{G}^T\mathbf{d}$

How to get there?

- General form: $\mathbf{d} = \mathbf{Gm} + \epsilon$
- Least squares solution: m_{est} = (G^TG)⁻¹G^Td

How to get there?

Variational approach:

Probabilistic approach:

Geometric approach:

- General form: $\mathbf{d} = \mathbf{Gm} + \epsilon$
- Least squares solution: m_{est} = (G^TG)⁻¹G^Td

How to get there?

- Variational approach:
 - assume optimal solution minimizes length, j of the residual vector r: $j = r^T r$
- Probabilistic approach:

Geometric approach:

- General form: $\mathbf{d} = \mathbf{Gm} + \epsilon$
- Least squares solution: m_{est} = (G^TG)⁻¹G^Td

How to get there?

- Variational approach:
 - assume optimal solution minimizes length, j of the residual vector r: j = r^Tr
- Probabilistic approach:
 - assume optimal solution is most probable one (maximum likelihood), derived from probability density function of observing measurements
- Geometric approach:

- General form: $\mathbf{d} = \mathbf{Gm} + \epsilon$
- Least squares solution: m_{est} = (G^TG)⁻¹G^Td

How to get there?

- Variational approach:
 - assume optimal solution minimizes length, j of the residual vector r: j = r^Tr
- Probabilistic approach:
 - assume optimal solution is most probable one (maximum likelihood), derived from probability density function of observing measurements
- · Geometric approach:
 - solution is a projection from data space into model space, what is projection of vector b in direction of vector a

- choose solution where residual vector r has minimum length
- most common is standard geometric / Euclidean length / L₂ norm:

$$L_2 = (r_1^2 + r_2^2 + r_3^2 + r_4^2 \dots)^{-1/2} = \sqrt{\sum_{i=1}^{N} r_i^2}$$

• *L*₁ - norm less sensitive to bias from single bad points:

$$L_1 = (|r_1| + |r_2| + |r_3| + |r_4| \dots)^{-1/2} = \sum_{i=1}^{N} |r_i|$$

- choose solution where residual vector r has minimum length
- most common is standard geometric / Euclidean length / L₂ norm:

$$L_2 = (r_1^2 + r_2^2 + r_3^2 + r_4^2 \dots)^{-1/2} = \sqrt{\sum_{i=1}^{N} r_i^2}$$

L₁ - norm less sensitive to bias from single bad points:

$$L_1 = (|r_1| + |r_2| + |r_3| + |r_4| \dots)^{-1/2} = \sum_{i=1}^{N} |r_i|$$

Solutions:

• Least squares solution: $\mathbf{m}_{est} = (\mathbf{G}^T\mathbf{G})^{-1}\mathbf{G}^T\mathbf{d}$

- choose solution where residual vector r has minimum length
- most common is standard geometric / Euclidean length / L₂ norm:

$$L_2 = (r_1^2 + r_2^2 + r_3^2 + r_4^2 \dots)^{-1/2} = \sqrt{\sum_{i=1}^{N} r_i^2}$$

L₁ - norm less sensitive to bias from single bad points:

$$L_1 = (|r_1| + |r_2| + |r_3| + |r_4| \dots)^{-1/2} = \sum_{i=1}^{N} |r_i|$$

Solutions:

- Least squares solution: m_{est} = (G^TG)⁻¹G^Td
- L_1 solution: $\mathbf{G}^{\mathsf{T}}\mathbf{R}\mathbf{G}\mathbf{m}_{\mathbf{est}} = \mathbf{G}^{\mathsf{T}}\mathbf{R}\mathbf{d}$
 - R: diagonal weighting matrix : $R_{i,i} = 1/|r_i|$
 - nonlinear, need iterative alorithm (IRLS) to solve
 - IRLS starts with $m_{est}^0 = m_{est,L_2}$ solution, construct R^0 using residuals
 - · iterate until some threshold reached

- $d = Gm + \epsilon$
- calculate $\mathbf{m}_{est} = (\mathbf{G}^T \mathbf{G})^{-1} \mathbf{G}^T \mathbf{d}$
- get residuals r_{est} = d Gm_{est}
- define $j(\mathbf{m}) = \mathbf{r}^{\mathsf{T}}\mathbf{r} = (\mathbf{d} \mathbf{G}\mathbf{m})^{\mathsf{T}}(\mathbf{d} \mathbf{G}\mathbf{m})$
- find minimum j: $\delta j(\mathbf{m_{est}}) = 0$

Confidence Intervals

- if independent and normally distributed data errors:
- $COV(m_{l_2}) = \sigma^2 (G^T G)^{-1}$
- get 95% confidence intervals:
 - each model parameter m_i has normal distribution
 - mean given by corresponding $m_{i,true}$

Confidence Intervals

- if independent and normally distributed data errors:
- $COV(m_{l_2}) = \sigma^2 (G^T G)^{-1}$
- get 95% confidence intervals:
 - each model parameter m_i has normal distribution
 - mean given by corresponding m_{i,true}
 - variance COV(m_{L2})_{i,i}

$$m_{L_2} \pm 1.96 (diag(COV(m_{L_2})))^{1/2}$$

Confidence Intervals

- if independent and normally distributed data errors:
- $COV(m_{l_2}) = \sigma^2 (G^T G)^{-1}$
- get 95% confidence intervals:
 - each model parameter m_i has normal distribution
 - mean given by corresponding $m_{i,true}$
 - variance COV(m_{L2})_{i,i}

$$m_{L_2} \pm 1.96 (diag(COV(m_{L_2})))^{1/2}$$

1.96 comes from:

$$\frac{1}{\sigma\sqrt{2\pi}}\int_{-1.96\sigma}^{1.96\sigma}e^{-\frac{x^2}{2\sigma^2}}dx\approx 0.95$$

model existence

model uniqueness

instability

- model existence
 - There may be no model that fits data (exactly)
 - physics are approximate (or wrong)
 - data contain noise
- model uniqueness

instability

- model existence
 - There may be no model that fits data (exactly)
 - physics are approximate (or wrong)
 - data contain noise
- model uniqueness
 - There may be other models than m_{true} that satisfy data
 - e.g., non-trivial null space Gm₀ = 0
 - · smoothing or other biases may affect solution
 - · model resolution analysis is critical!
- instability

- model existence
 - There may be no model that fits data (exactly)
 - physics are approximate (or wrong)
 - data contain noise
- model uniqueness
 - There may be other models than m_{true} that satisfy data
 - e.g., non-trivial null space Gm₀ = 0
 - · smoothing or other biases may affect solution
 - model resolution analysis is critical!
- instability
 - small change in measurement results in enormous change in parameter estimates
 - possibly stabilize such problems regularization (smoothing)